Context Sensitive Sentiment Analysis of Financial Tweets: A New Dictionary

  • Narges Tabari
  • Mirsad Hadzikadic
Part of the Studies in Big Data book series (SBD, volume 40)


Sentiment analysis can make a contribution to behavioral economics and behavioral finance. It is concerned with the effect of opinions and emotions on economical or financial decisions. In sentiment analysis, or in opinion mining as they often call it, emotions or opinions of various degrees are assigned to the text (tweets in this case) under consideration. This paper describes an application of a lexicon-based domain-specific approach to a set of tweets in order to calculate sentiment analysis of the tweets. Further, we introduce a domain-specific lexicon for the financial domain and compare the results with those reported in other studies. The results show that using a context-sensitive set of positive and negative words, rather than one that includes general keywords, produces better outcomes than those achieved by humans on the same set of tweets.


Sentiment analysis Twitter Financial sentiment analysis Lexicon 


  1. 1.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)CrossRefGoogle Scholar
  2. 2.
    Loughran, T.I.M., Mcdonald, B.: When is a Liability not a Liability ? Textual Analysis, Dictionaries, and 10-Ks Journal of Finance, forthcoming (2010)Google Scholar
  3. 3.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval, xv + 448 pp., $32.95. McGraw-Hill, New York (1983). ISBN 0-07-054484-0Google Scholar
  4. 4.
    Das, S.R., Chen, M.Y.: Yahoo! for Amazon: sentiment extraction from small talk on the web. Manag. Sci. 53(9), 1375–1388 (2007)CrossRefGoogle Scholar
  5. 5.
    Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of twitter. In: Lecture Notes Computer Science (including Subser. Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7649 LNCS, no. PART 1, pp. 508–524 (2012)CrossRefGoogle Scholar
  6. 6.
    O’Hare, N., Davy, M., Bermingham, A., Ferguson, P., Sheridan, P.P., Gurrin, C., Smeaton, A.F., OHare, N.: Topic-dependent sentiment analysis of financial blogs. In: International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion Measurement, pp. 9–16, 2009Google Scholar
  7. 7.
    Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. In: Proceedings of the Seventh International Workshop on Semantic Evaluation. Exercises, vol. 2, no. SemEval, pp. 321–327 (2013)Google Scholar
  8. 8.
    Hamdan, H.: Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analysis in micro-blogging. In: Seventh International Workshop on Semantic Evaluation (SemEval 2013)—Second Joint Conference on Lexical and Computational Semantics, vol. 2, no. SemEval, pp. 455–459 (2013)Google Scholar
  9. 9.
    Da Silva, N.F.F., Hruschka, E.R., Hruschka, E.R.: Tweet sentiment analysis with classifier ensembles. Decis. Support Syst. 66, 170–179 (2014)CrossRefGoogle Scholar
  10. 10.
    Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)CrossRefGoogle Scholar
  11. 11.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Processing 150(12), 1–6 (2009)Google Scholar
  12. 12.
    Speriosu, M., Sudan, N., Upadhyay, S., Baldridge, J.: Twitter polarity classification with label propagation over lexical links and the follower graph. In: Conference on Empirical Methods in Natural Language Processing, pp. 53–56 (2011)Google Scholar
  13. 13.
    Aue, A., Gamon, M.: Customizing sentiment classifiers to new domains: a case study. Proc. Recent Adv. Nat. Lang. Process. 3(3), 16–18 (2005)Google Scholar
  14. 14.
    Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3. 0: an enhanced lexical resource for sentiment analysis and opinion mining SentiWordNet. Analysis 0, 1–12 (2010)Google Scholar
  15. 15.
    Wilson, T., Wiebe, J., Hoffman, P.: Recognizing contextual polarity in phrase level sentiment analysis. ACL 7(5), 12–21 (2005)Google Scholar
  16. 16.
    Pennebaker, J.W., Graybeal, A.: Patterns of natural language use: disclosure, personality, and social integration. Curr. Dir. Psychol. Sci. 10(3), 90–93 (2001)CrossRefGoogle Scholar
  17. 17.
    Andreevskaia, A., Bergler, S.: When specialists and generalists work together: overcoming domain dependence in sentiment tagging. In: Proceedings of the ACL-08 HLT, no. June, pp. 290–298 (2008)Google Scholar
  18. 18.
    Neviarouskaya, A., Prendinger, H., Ishizuka, M.: SentiFul: generating a reliable lexicon for sentiment analysis. In: Proceedings of the 2009 3rd International Conference on Affective Computing and Intelligent Interaction Workshop, ACII (2009)Google Scholar
  19. 19.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 04, vol. 4, p. 168 (2004)Google Scholar
  20. 20.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D.: Sentiment strength detection in short informal text. Am. Soc. Inf. Sci. Technol. 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  21. 21.
    Turney, P.D., Pantel, P.: Open image in new window From Frequency to Meaning Vector Space Models of Semantics (Open image in new window, 但是我还只看了三分之一), vol. 37, pp. 141–188 (2010)Google Scholar
  22. 22.
    Turney, P.D., Littman, M.L.: Unsupervised learning of semantic orientation from a hundred-billion-word corpus. Tech. Rep. NRC Tech. Rep. ERB-1094, Inst. Inf. Technol., p. 11 (2002)Google Scholar
  23. 23.
    Chen, R., Lazer, M.: Sentiment Analysis of Twitter Feeds for the Prediction of Stock Market Movement, pp. 1–5 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UNC CharlotteCharlotteUSA

Personalised recommendations