Advertisement

Efficient Discovery of Sequential Patterns from Event-Based Spatio-Temporal Data by Applying Microclustering Approach

  • Piotr S. Macia̧g
Chapter
Part of the Studies in Big Data book series (SBD, volume 40)

Abstract

Discovering various types of frequent patterns in spatiotemporal data is gaining attention of researchers nowadays. We consider spatiotemporal data represented in the form of events, each associated with location, type and occurrence time. The problem is to discover all significant sequential patterns denoting spatial and temporal relations between event types. In the paper, we adapted a microclustering approach and use it to effectively and efficiently discover sequential patterns and to reduce size of dataset of instances. Appropriate indexing structure has been proposed and notions already defined in the literature have been reformulated. We modify algorithms already defined in literature and propose an algorithm called Micro-ST-Miner for discovering sequential patterns in event-based spatiotemporal data.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994). http://dl.acm.org/citation.cfm?id=645920.672836
  2. 2.
    Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-based spatial join. In: Proceedings of the 24rd International Conference on Very Large Data Bases, VLDB ’98, pp. 570–581. Morgan Kaufmann Publishers Inc., San Francisco (1998). http://dl.acm.org/citation.cfm?id=645924.671340
  3. 3.
    Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geom. 41(3), 111–125 (2008). http://www.sciencedirect.com/science/article/pii/S092577210700106XMathSciNetCrossRefGoogle Scholar
  4. 4.
    Boinski, P., Zakrzewicz, M.: Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results. J. Intell. Inf. Syst. 43(1), 147–182 (2014).  https://doi.org/10.1007/s10844-014-0311-xCrossRefGoogle Scholar
  5. 5.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD ’00, pp. 1–12. ACM, New York (2000).  https://doi.org/10.1145/342009.335372
  6. 6.
    Huang, Y., Zhang, L., Zhang, P.: A framework for mining sequential patterns from spatio-temporal event data sets. IEEE Trans. Knowl. Data Eng. 20(4), 433–448 (2008)CrossRefGoogle Scholar
  7. 7.
    Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. Proc. VLDB Endow. 3(1–2), 723–734 (2010).  https://doi.org/10.14778/1920841.1920934CrossRefGoogle Scholar
  8. 8.
    Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, pp. 1099–1108. ACM, New York (2010).  https://doi.org/10.1145/1835804.1835942
  9. 9.
    Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pp. 236–245. ACM, New York (2004).  https://doi.org/10.1145/1014052.1014080
  10. 10.
    Mohan, P., Shekhar, S., Shine, J.A., Rogers, J.P.: Cascading spatio-temporal pattern discovery. IEEE Trans. Knowl. Data Eng. 24(11), 1977–1992 (2012)CrossRefGoogle Scholar
  11. 11.
    Shekhar, S., Evans, M.R., Kang, J.M., Mohan, P.: Identifying patterns in spatial information: a survey of methods. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(3), 193–214 (2011).  https://doi.org/10.1002/widm.25Google Scholar
  12. 12.
    Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements, pp. 1–17. Springer, Berlin (1996).  https://doi.org/10.1007/BFb0014140Google Scholar
  13. 13.
    Thabtah, F.: A review of associative classification mining. Knowl. Eng. Rev. 22(1), 37–65 (2007).  https://doi.org/10.1017/S0269888907001026CrossRefGoogle Scholar
  14. 14.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, KDD’97, pp. 283–286. AAAI Press (1997). http://dl.acm.org/citation.cfm?id=3001392.3001454
  15. 15.
    Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1), 31–60 (2001).  https://doi.org/10.1023/A:1007652502315
  16. 16.
    Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, SIGMOD ’96, pp. 103–114. ACM, New York (1996).  https://doi.org/10.1145/233269.233324

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations