Skip to main content

Construction of a Repertoire of Analog Form-Finding Techniques as a Basis for Computational Morphological Exploration in Design and Architecture

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2018)

Abstract

The article describes the process of constructing a repertoire of analog form-finding techniques, which can be used in evolutionary computation to (i) compare the techniques among them and select the most suitable for a project, (ii) to explore forms or shapes in an analog and/or manual way, (iii) as a basis for the development of algorithms in specialized software, (iv) or to understand the physical processes and mathematical procedures of the techniques. To our knowledge no one has built a repertoire of this nature, since all the techniques are in sources of diverse disciplines. Methodologically, the construction process was based on a systematic review of the literature, allowing us to identify 33 techniques where the principles of bio-inspiration and self-organization are evident, characteristics both of form-finding strategies. As a result, we present the repertoire structure, composed of five groups of techniques sharing similar physical processes: inflate, group, de-construct, stress, solidify and fold. Subsequently, the repertoire’s conceptual, mathematical, and graphical analysis categories are presented. Finally, conclusions of potential applications and research trends of the subject are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard, T.J., Culley, S.J., Dekoninck, E.: Describing the creative design process by the integration of engineering design and cognitive psychology literature. Des. Stud. 29(2), 160–180 (2008). https://doi.org/10.1016/j.destud.2008.01.001

    Article  Google Scholar 

  2. Römer, A., Pache, M., Weißhahn, G., Lindemann, U., Hacker, W.: Effort-saving product representations in design—results of a questionnaire survey. Des. Stud. 22(6), 473–491 (2001). https://doi.org/10.1016/S0142-694X(01)00003-5

    Article  Google Scholar 

  3. Terstiege, G. (ed.): The Making of Design: From the First Model to the Final Product. Birkhäuser, Basel (2009)

    Google Scholar 

  4. Egenhofer, M.J.: Qualitative spatial-relation reasoning for design. In: Gero, J.S. (ed.) Studying Visual and Spatial Reasoning for Design Creativity, pp. 153–175. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9297-4_9

    Google Scholar 

  5. Oxman, R.: Design by re-representation: a model of visual reasoning in design. Des. Stud. 18(4), 329–347 (1997). https://doi.org/10.1016/S0142-694X(97)00005-7

    Article  Google Scholar 

  6. Wilmaz, S., Ae, J., Se, Y.: Effects of cognitive activities on designer creativity and performance: a detailed look into the visual reasoning model. In: Conference on Korea-Japan Design Engineering Workshop, Seoul, South Korea (2016)

    Google Scholar 

  7. Park, J.A., Kim, Y.S.: Visual reasoning and design processes. In: International Conference on Engineering Design (ICED), Paris (2007). https://doi.org/10.1.1.93.9799

    Google Scholar 

  8. Goldschmidt, G.: Modeling the role of sketching in design idea generation. In: Chakrabarti, A., Blessing, Lucienne T.M. (eds.) An Anthology of Theories and Models of Design, pp. 433–450. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6338-1_21

    Chapter  Google Scholar 

  9. Singh, V., Gu, N.: Towards an integrated generative design framework. Des. Stud. 33(2), 185–207 (2012). https://doi.org/10.1016/j.destud.2011.06.001

    Article  Google Scholar 

  10. Johnson, G., Gross, M.D., Hong, J., Do, E.Y.L.: Computational support for sketching in design: a review. Found. Trends® Hum.-Comput. Interact. 2(1), 1–93 (2009). https://doi.org/10.1561/1100000013

    Article  Google Scholar 

  11. Catalano, C.E., Falcidieno, B., Giannini, F., Monti, M.: A survey of computer-aided modeling tools for aesthetic design. J. Comput. Inf. Sci. Eng. 2(1), 11–20 (2002). https://doi.org/10.1115/1.1481371

    Article  Google Scholar 

  12. Post, R.A.G., Blijlevens, J., Hekkert, P.: Unity-in-variety in product design aesthetics. In: Proceedings of the TeaP 2013, p. 217. Pabst Science Publishers (2013)

    Google Scholar 

  13. Thurgood, C., Hekkert, P., Blijlevens, J.: The joint effect of typicality and novelty on aesthetic pleasure for product designs: influences of safety and risk. In: International Association of Empirical Aesthetics, pp. 391–396 (2014)

    Google Scholar 

  14. Purcell, A., Gero, J.S.: Drawings and the design process: a review of protocol studies in design and other disciplines and related research in cognitive psychology. Des. Stud. 19(4), 389–430 (1998). https://doi.org/10.1016/S0142-694X(98)00015-5

    Article  Google Scholar 

  15. Mougenot, C., Bouchard, C., Aoussat, A.: Creativity in design—how designers gather information in the “Preparation” phase. In: Proceedings of IASDR 2007, pp. 11–15 (2007)

    Google Scholar 

  16. Baxter, M.: Product Design: Practical Methods for the Systematic Development of New Products. CRC Press, Boca Raton (1995)

    Google Scholar 

  17. Goldschmidt, G., Smolkov, M.: Variances in the impact of visual stimuli on design problem solving performance. Des. Stud. 27(5), 549–569 (2006). https://doi.org/10.1016/j.destud.2006.01.002

    Article  Google Scholar 

  18. Goldschmidt, G.: Ubiquitous serendipity: potential visual design stimuli are everywhere. In: Gero, J.S. (ed.) Studying Visual and Spatial Reasoning for Design Creativity, pp. 205–214. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9297-4_12

    Google Scholar 

  19. Hopf, A.: Renaissance 2.0—expanding the morphologic repertoire in design. In: 24th Cumulus Conference, vol. 24, no. 09, pp. 78–85, September 2009

    Google Scholar 

  20. Celani, G.: Enseñando diseño generativo: una experiencia didáctica. XII Congreso Sigradi, Cuba. Diciembre, pp. 1–4 (2008)

    Google Scholar 

  21. Burry, J., Maher, A.: The other mathematical bridge. Nexus Netw. J. Architect. Math. 10(1), 179–194 (2008). https://doi.org/10.1007/978-3-7643-8728-0_11

    Article  MATH  Google Scholar 

  22. Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Autom. Constr. 14(2), 253–264 (2005). https://doi.org/10.1016/j.autcon.2004.07.002

    Article  Google Scholar 

  23. Szalapaj, P.: Contemporary Architecture and the Digital Design Process. Routledge, Abingdon (2014)

    Google Scholar 

  24. McCormack, J., Dorin, A., Innocent, T.: Generative design: a paradigm for design research. In: Proceedings of the Futureground, Design Research Society, Melbourne (2004)

    Google Scholar 

  25. Menges, A.: Pluripotent components and polymorphous systems: an alternative approach to parametric design. AA Files 52, 63–74 (2005)

    Google Scholar 

  26. Chase, S.C.: Generative design tools for novice designers: issues for selection. Autom. Constr. 14(6), 689–698 (2005). https://doi.org/10.1016/j.autcon.2004.12.004

    Article  Google Scholar 

  27. Otto, F., Rasch, B.: Finding Form: Towards an Architecture of the Minimal. Axel Menges, Alemania (2001)

    Google Scholar 

  28. Oxman, R.: Morphogenesis in the theory and methodology of digital tectonics. J. Int. Assoc. Shell Spat. Struct. 51(3), 195 (2010)

    Google Scholar 

  29. Spuybroek, L.: Textile tectonics: an interview. In: Garcia, M., (ed.) Architextiles, AD, Profile no. 184, pp. 52–59 [23] Vanucci (2006)

    Google Scholar 

  30. Wagensberg, J.: La rebelión de las formas. O cómo perseverar cuando la incertidumbre aprieta. Matemas, Barcelona (2004)

    Google Scholar 

  31. Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.K.: Biomimetics: its practice and theory. J. R. Soc. Interface 3(9), 471–482 (2006). https://doi.org/10.1098/rsif.2006.0127

    Article  Google Scholar 

  32. Jirapong, K., Krawczyk, R.J., Elnimeiri, M.: Natural forms as virtual architectures. In: Proceedings of the 20th Conference on Education in Computer Aided Architectural Design in Europe, Warsaw, pp. 1–4 (2002)

    Google Scholar 

  33. Wen, H.I., Zhang, S.J., Hapeshi, K., Wang, X.F.: An innovative methodology of product design from nature. J. Bionic. Eng. 5(1), 75–84 (2008). https://doi.org/10.1016/S1672-6529(08)60009-8

    Article  Google Scholar 

  34. Bejan, A., Lorente, S.: Constructal law of design and evolution: physics, biology, technology, and society. J. Appl. Phys. 113(15), 6 (2013). https://doi.org/10.1063/1.4798429

    Article  Google Scholar 

  35. MRGD: MORPHE MRGD. Springer Wien New York, New York, E.E.U.U (2008)

    Google Scholar 

  36. Schumacher, P.: Preface: Autopoietic Elegance. In: MORPHE MRGD (ed.) Research Institute for Experimental Architecture, pp. 6–8. Springer Wien New York, New York, E.E.U.U (2008)

    Google Scholar 

  37. McKay, A., Chase, S., Garner, S., Jowers, I., Prats, M., Hogg, D., Lim, S.: Design synthesis and shape generation. In: Inns, T. (ed.) Designing for the 21st Century: Interdisciplinary Methods and Findings, pp. 304–321. Gower Publishing Ltd., Aldershot (2009)

    Google Scholar 

  38. Kull, U.: Frei Otto and biology. In: Nerdinger, W. (ed.) Frei Otto, Complete Works: Lightweight Construction Natural Design, pp. 44–55. Birkhauser, Basel (2005)

    Google Scholar 

  39. Menges, A.: Biomimetic design processes in architecture: morphogenetic and evolutionary computational design. Bioinspiration Biomim. 7(1), 015003 (2012). https://doi.org/10.1088/1748-3182/7/1/015003

    Article  Google Scholar 

  40. Arbeláez, E., Patiño, E.: Generación y transformación de la forma. UPB, Medellín (2010)

    Google Scholar 

  41. Georgescu-Roegen, N.: The Law of Entropy and the Economic Process. Harvard University Press, Cambridge (1971)

    Book  Google Scholar 

  42. Patiño, E., Arango, M., Jaramillo, J.: Biomimética o la traducción de los fenómenos biológicos al diseño. Iconofacto. 11(16), 201–212 (2015)

    Google Scholar 

  43. Hildebrandt, S., Tromba, A.: Matemática y formas óptimas. Prensa Científica, Barcelona (1990)

    Google Scholar 

  44. Calvert, P.: Biomimetic ceramics and composites. MRS Bull. 17(10), 37–40 (1992). https://doi.org/10.1557/S0883769400046467

    Article  Google Scholar 

  45. Sorguç, A.G., Hagiwara, I., Selcuk, S.: Origamics in architecture: a medium of inquiry for design in architecture. METU JFA 2, 26 (2009). https://doi.org/10.4305/METU.JFA.2009.2.12

    Google Scholar 

  46. Rojo, J.J.: Miguel Fisac Serna. Arquitecto. Vida y obra. Universidad de Valladolid (2013). http://uvadoc.uva.es/handle/10324/4860

  47. Fuller, R.B.: Synergetics: explorations in the geometry of thinking. Estate of R. Buckminster Fuller, San Francisco (1982)

    Google Scholar 

  48. Rodríguez, F.S., Sañudo, L.G., Vanegas, D.E.: Estructuras Ligeras. UPB, Medellín (2006)

    Google Scholar 

  49. Nabaei, S.S., Baverel, O., Weinand, Y.: Mechanical form-finding of the timber fabric structures with dynamic relaxation method. Int. J. Space Struct. 28(3–4), 197–214 (2013)

    Article  Google Scholar 

  50. Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., Khan, A.: Physics-based generative design. In: CAAD Futures Conference, pp. 231–244 (2009)

    Google Scholar 

  51. De Micoli, S., Rinderspacher, K., Menges, A.: Stone morphologies: erosion-based digital fabrication through event-driven control. In: De Rycke, K., Gengnagel, C., Baverel, O., Burry, J., Mueller, C., Nguyen, M.M., Rahm, P., Ramsgaard Thomsen, M. (eds.) Humanizing Digital Reality, pp. 113–124. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6611-5_11

    Chapter  Google Scholar 

  52. Schaur, E.: IL39: non-planned settlements: characteristic features - path system, surface subdivision. Institut für leichte Flächentragwerke, Universität Stuttgart, Stuttgart (1992)

    Google Scholar 

  53. Oxman, N., Rosenberg, J.L.: Material-based design computation an inquiry into digital simulation of physical material properties as design generators. Int. J. Archit. Comput. 5(1), 25–44 (2007)

    Article  Google Scholar 

  54. GT2P: Great things to people. In: Plaza, C. (ed.), Nuevos Creativos Chilenos, vol. 1, pp. 30-35. Santiago de Chile, Talleres Ograma (2015)

    Google Scholar 

  55. Sanchiz, G.: Porous cast. In: Hensel, M., Menges, A. (eds.) Architectural Design: Versatility and Vicissitude. Wiley, London (2008). 60 p.

    Google Scholar 

  56. Bletzinger, K.U., Ramm, E.: Structural optimization and form finding of light weight structures. Comput. Struct. 79(22), 2053–2062 (2001). https://doi.org/10.1016/S0045-7949(01)00052-9

    Article  Google Scholar 

  57. Agkathidis, A.: Diseño generativo: Procesos para concebir nuevas formas arquitectónicas. Promopress, Barcelona (2013)

    Google Scholar 

  58. Sastre, R.: Las estructuras neumáticas y la presión interior (2012). http://www.wintess.com/las-estructuras-neumaticas-y-la-presion-interior/

  59. Eggers, H.: Acerca de la estática y el dimensionamiento de las estructuras soportadas por aire. In: Herzog, Y.: (ed.), Construcciones neumáticas: Manual de arquitectura hinchable, pp. 164–182. Editorial Gustavo Gili, Barcelona (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ever Patiño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patiño, E., Maya, J. (2018). Construction of a Repertoire of Analog Form-Finding Techniques as a Basis for Computational Morphological Exploration in Design and Architecture. In: Liapis, A., Romero Cardalda, J., Ekárt, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2018. Lecture Notes in Computer Science(), vol 10783. Springer, Cham. https://doi.org/10.1007/978-3-319-77583-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77583-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77582-1

  • Online ISBN: 978-3-319-77583-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics