Skip to main content

Dynamic Correlation Under Isochronal Conditions

  • Chapter
  • First Online:
Nonlinear Dielectric Spectroscopy

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

  • 955 Accesses

Abstract

Results of various methods of evaluating the dynamic correlation volume in glassforming liquids and polymers are summarized. Most studies indicate that this correlation volume depends only on the α-relaxation time; that is, at state points associated with the same value of τ α , the extent of the correlation among local motions is equivalent. Nonlinear dielectric spectroscopy was used to measure the third-order susceptibility. Its amplitude, a measure of the dynamic correlation volume, is constant for isochronal state points, which supports the interpretation of the magnitude of the nonlinear susceptibility in terms of dynamic correlation. More broadly, it serves to establish that for non-associated materials, the cooperativity of molecular motions is connected to their timescale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Frick, C. Alba-Simionesco, K.H. Andersen, L. Willner, Influence of density and temperature on the microscopic structure and the segmental relaxation of polybutadiene. Phys. Rev. E 67, 051801 (2003)

    Article  CAS  Google Scholar 

  2. A. Cailliaux, C. Alba-Simionesco, B. Frick, L. Willner, I. Goncharenko, Phys. Rev. E 67, 010802 (2003)

    Article  CAS  Google Scholar 

  3. R. Bohmer, Nanoscale heterogeneity of glass-forming liquids: experimental advances. Cur. Opin. Sol. State Mat. Sci. 3, 378–385 (1998)

    Article  CAS  Google Scholar 

  4. H. Sillescu, Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81–108 (1999)

    Article  CAS  Google Scholar 

  5. M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Ann. Rev. Phys. Chem. 51, 99–128 (2000)

    Article  CAS  Google Scholar 

  6. H. Sillescu, R. Bohmer, G. Diezemann, G. Hinze, Heterogeneity at the glass transition: what do we know? J. Non-Cryst. Sol. 307–310, 16–23 (2002)

    Article  Google Scholar 

  7. R. Richert, N. Israeloff, C. Alba‐Simionesco, F. Ladieu, D. L’Hote, Experimental approaches to heterogeneous dynamics in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, ed. by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos (Oxford University Press, Oxford, 2011)

    Chapter  Google Scholar 

  8. K. Kim, S. Saito, Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations. J. Chem. Phys. 138, 12A506 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. C.M. Roland, D. Fragiadakis, D. Coslovich, S. Capaccioli, K.L. Ngai, Correlation of nonexponentiality with dynamic heterogeneity from four-point dynamic susceptibility χ4(t) and its approximation χT(t). J. Chem. Phys. 133, 124507 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993)

    Article  Google Scholar 

  11. K. Niss, C. Dalle-Ferrier, G. Tarjus, C. Alba-Simionesco, On the correlation between fragility and stretching in glass-forming liquids. J. Phys. Cond. Mat. 19, 076102 (2007)

    Article  CAS  Google Scholar 

  12. E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. O. Dauchot, G. Marty, G. Biroli, Dynamical heterogeneity close to the jamming transition in a sheared granular material. Phys. Rev. Lett. 95, 265701 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965)

    Article  CAS  Google Scholar 

  15. K.S. Schweizer, E.J. Saltzman, Activated hopping, barrier fluctuations, and heterogeneity in glassy suspensions and liquids. J. Phys. Chem. B 108, 19729–19741 (2004)

    Article  CAS  Google Scholar 

  16. J.P. Garrahan, D. Chandler, Dynamics on the way to forming glass: bubbles in space-time. Ann. Rev. Phys. Chem. 61, 191–217 (2010)

    Article  CAS  Google Scholar 

  17. V. Lubchenko, P.G. Wolynes, Theory of structural glasses and supercooled liquids. Ann. Rev. Phys. Chem. 58, 235–266 (2007)

    Article  CAS  Google Scholar 

  18. A. Heuer, Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport. J. Phys. Con. Mat. 20, 373101 (2008)

    Article  CAS  Google Scholar 

  19. F. Rittig, A. Huwe, G. Fleischer, J. Kärger, F. Kremer, Molecular dynamics of glass-forming liquids in confining geometries. Phys. Chem. Chem. Phys. 1, 519–523 (1999)

    Article  CAS  Google Scholar 

  20. G. Dosseh, C. Le Quellec, N. Brodie-Lindner, C. Alba-Simionesco, W. Haeussler, P. Levitz, Fluid–wall interactions effects on the dynamical properties of confined orthoterphenyl. J. Non-Cryst. Sol. 352, 4964–4968 (2006)

    Article  CAS  Google Scholar 

  21. J. Koppensteiner, W. Schranz, M.A. Carpenter, Revealing the pure confinement effect in glass-forming liquids by dynamic mechanical analysis. Phys. Rev. B 81, 024202 (2010)

    Article  CAS  Google Scholar 

  22. C.L. Jackson, G.B. McKenna, The glass transition of organic liquids confined to small pores. J. Non-Cryst. Sol. 131–133, 221–224 (1991)

    Article  Google Scholar 

  23. Y.B. Melnichenko, J. Schuller, R. Richert, B. Ewen, C.K. Loong, Dynamics of hydrogen bonded liquids confined to mesopores—a dielectric and neutron spectroscopy study. J. Chem. Phys. 103, 2016–2024 (1995)

    Article  CAS  Google Scholar 

  24. F. Kremer, A. Huwe, M. Arndt, P. Behrens, W. Schwieger, How many molecules form a liquid? J. Phys. Cond. Mat. 11, A175–A188 (1999)

    Article  CAS  Google Scholar 

  25. A. Schonhals, H. Goering, C. Schick, B. Frick, R. Zorn, Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments. Eur. Phys. J. E 12, 173–178 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. A. Schonhals, H. Goering, C. Schick, B. Frick, M. Mayorova, R. Zorn, Segmental dynamics of poly(methyl phenyl siloxane) confined to nanoporous glasses. Eur. Phys. J. Spec. Topics. 141, 255–259 (2007)

    Article  Google Scholar 

  27. J.P. Bouchaud, G. Biroli, On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. G. Biroli, J.-P. Bouchaud, A. Cavagna, T.S. Grigera, P. Verrocchio, Thermodynamic signature of growing amorphous order in glass-forming liquids. Nat. Phys. 4, 771–775 (2008)

    Article  CAS  Google Scholar 

  29. S. Yaida, L. Berthier, P. Charbonneau, G. Tarjus, Point-to-set lengths, local structure, and glassiness. Phys. Rev. E 94, 032605 (2016)

    Article  PubMed  Google Scholar 

  30. W. Kob, S. Roldán-Vargas, L. Berthier, Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nat. Phys. 8, 164 (2012)

    Article  CAS  Google Scholar 

  31. G.M. Hocky, L. Berthier, W. Kob, D.R. Reichman, Static point-to-set correlations in glass-forming liquids. Phys. Rev. E 85, 011102 (2012)

    Article  CAS  Google Scholar 

  32. K. Hima Nagamanasa, S. Gokhale, A.K. Sood, R. Ganapathy, Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former. Nat. Phys. 11, 403 (2015)

    Article  CAS  Google Scholar 

  33. S, Gokhale, K. Hima Nagamanasa, R. Ganapathy, A. K. Sood, Growing dynamic facilitation on approaching the random pinning colloidal glass transition. Nat. Commun. 5, 4685 (2014)

    Google Scholar 

  34. B. Mei, Y. Lu, L. An, H. Li, L. Wang, Nonmonotonic dynamic correlations in quasi-tow-dimensional confined glass-forming liquids. Phys. Rev. E 95, 050601(R) (2017)

    Article  Google Scholar 

  35. A. Schonhals, E. Schlosser, Relationship between segmental and chain dynamics in polymer melts as studied by dielectric spectroscopy. Phys. Scr. T49, 233–236 (1993)

    Article  Google Scholar 

  36. C. Gainaru, W. Hiller, R. Bohmer, A dielectric study of oligo- and poly(propylene glycol). Macromolecules 43, 1907–1914 (2010)

    Article  CAS  Google Scholar 

  37. D. Fragiadakis, R. Casalini, R.B. Bogoslovov, C.G. Robertson, C.M. Roland, Dynamic heterogeneity and density scaling in 1,4-polyisoprene. Macromolecules 44, 1149–1155 (2011)

    Article  CAS  Google Scholar 

  38. U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727–2730 (1998)

    Article  CAS  Google Scholar 

  39. S.A. Reinsberg, X.H. Qiu, M. Wilhelm, H.W. Spiess, M.D. Ediger, Length scale of dynamic heterogeneity in supercooled glycerol near Tg. J. Chem. Phys. 114, 7299–7302 (2001)

    Article  CAS  Google Scholar 

  40. S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, Comparative study of the NMR length scale of dynamic heterogeneities of three different glass formers. J. Non-Cryst. Solid 307–310, 208–214 (2002)

    Article  Google Scholar 

  41. X.H. Qiu, M.D. Ediger, Length scale of dynamic heterogeneity in supercooled d-sorbitol: comparison to model predictions. J. Phys. Chem. B 107, 459–464 (2003)

    Article  CAS  Google Scholar 

  42. E. Donth, The size of cooperatively rearranging regions at the glass transition. J. Non-Cryst. Sol. 53, 325–330 (1982)

    Article  CAS  Google Scholar 

  43. K. Schroter, Characteristic length of glass transition heterogeneity from calorimetry. J Non-Cryst. Sol. 352, 3249–3254 (2006)

    Article  CAS  Google Scholar 

  44. A. Saiter, L. Delbreilh, H. Couderc, K. Arabeche, A. Schönhals, J.-M. Saiter, Temperature dependence of the characteristic length scale for glassy dynamics: Combination of dielectric and specific heat spectroscopy. Phys. Rev. E 81, 041805 (2010)

    Article  CAS  Google Scholar 

  45. E. Hempel, G. Hempel, A. Hensel, C. Schick, E. Donth, Characteristic length of dynamic glass transition near tg for a wide assortment of glass-forming substances. J. Phys. Chem. B 104, 2460–2466 (2000)

    Article  CAS  Google Scholar 

  46. C. Dasgupta, A.V. Indrani, S. Ramaswamy, M.K. Phani, Is there a growing correlation length near the glass transition? Europhys. Lett. 15, 307–312 (1991)

    Article  CAS  Google Scholar 

  47. L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011)

    Article  CAS  Google Scholar 

  48. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote, F. Ladieu, M. Pierno, Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005)

    Article  CAS  PubMed  Google Scholar 

  49. C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J.P. Bouchaud, F. Ladieu, D. L’Hote, G. Tarjus, Spatial correlations in the dynamics of glassforming liquids: experimental determination of their temperature dependence. Phys. Rev. E 76, 041510 (2007)

    Article  CAS  Google Scholar 

  50. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hôte, F. Ladieu, M. Pierno, Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, Spontaneous and induced dynamic fluctuations in glass formers. 1. General results and dependence on ensemble and dynamics. J. Chem. Phys. 126, 184503 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. S. Capaccioli, G. Ruocco, F. Zamponi, Dynamically correlated regions and configurational entropy in supercooled liquids. J. Phys. Chem. B 112, 10652–10658 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. E. Flenner, G. Szamel, Dynamic heterogeneities above and below the mode-coupling temperature: evidence of a dynamic crossover. J. Chem. Phys. 138, 12A523 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. K. Koperwas, A. Grzybowski, K. Grzybowska, Z. Wojnarowska, A.P. Sokolov, M. Paluch, Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming van der Waals liquids under high pressure. Phys. Rev. Lett. 111, 125701 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. R. Casalini, L. Zhu, E. Baer, C.M. Roland, Segmental dynamics and the correlation length in nanoconfined PMMA. Polymer 88, 133–136 (2016)

    Article  CAS  Google Scholar 

  56. T.S. Ingebrigtsen, J.R. Errington, T.M. Truskett, J.C. Dyre, Predicting how nanoconfinement changes the relaxation time of a supercooled liquid. Phys. Rev. Lett. 111, 235901 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. D. Fragiadakis, R. Casalini, C.M. Roland, Density scaling and dynamic correlations in viscous liquids. J. Phys. Chem. B 113, 13134–13147 (2009)

    Article  CAS  PubMed  Google Scholar 

  58. C. Alba-Simionesco, C. Dalle-Ferrier, G. Tarjus, Effect of pressure on the number of dynamically correlated molecules when approaching the glass transition. AIP Conf. Proc. 1518, 527–535 (2013)

    Article  CAS  Google Scholar 

  59. R. Casalini, D. Fragiadakis, C.M. Roland, Dynamic correlation length scales under isochronal conditions. J. Chem. Phys. 142, 064504 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. J.-P. Bouchaud, G. Biroli, Nonlinear susceptibility in glassy systems: a probe for cooperative dynamical length scales. Phys. Rev. B 72, 064204 (2005)

    Article  CAS  Google Scholar 

  61. C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Evidence of growing spatial correlations at the glass transition from nonlinear response experiments. Phys. Rev. Lett. 104, 165703 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. Th Bauer, P. Lunkenheimer, A. Loidl, Cooperativity and the freezing of molecular motion at the glass transition. Phys. Rev. Lett. 111, 225702 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. M. Michl, Th Bauer, P. Lunkenheimer, A. Loidl, Nonlinear dielectric spectroscopy in a fragile plastic crystal. J. Chem. Phys. 144, 114506 (2016)

    Article  CAS  PubMed  Google Scholar 

  64. S. Albert, Th Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352, 1308 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. G. Diezemann, Higher-order correlation functions and nonlinear response functions in a Gaussian trap model. J. Chem. Phys. 138, 12A505 (2013)

    Article  CAS  PubMed  Google Scholar 

  66. C. Brun, C. Crauste-Thibierge, F. Ladieu, D. L’Hôte, Third harmonics nonlinear susceptibility in supercooled liquids: a comparison to the box model. J. Chem. Phys. 134, 194507 (2011)

    Article  CAS  PubMed  Google Scholar 

  67. P. Kim, A.R. Young-Gonzales, R. Richert, Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model. J. Chem. Phys. 145, 064510 (2016)

    Article  CAS  Google Scholar 

  68. R. Richert, Nonlinear dielectric signatures of entropy changes in liquids subject to time dependent electric fields. J. Chem. Phys. 144, 114501 (2016)

    Article  CAS  PubMed  Google Scholar 

  69. P. Gadige, S. Albert, M. Michl, Th Bauer, P. Lunkenheimer, A. Loidl, R. Tourbot, C. Wiertel-Gasquet, G. Biroli, J.-P. Bouchaud, F. Ladieu, Unifying different interpretations of the nonlinear response in glass-forming liquids. Phys. Rev. E 96, 032611 (2017)

    Article  CAS  PubMed  Google Scholar 

  70. C. Brun, F. Ladieu, D. L’Hôte, M. Tarzia, G. Biroli, J.-P. Bouchaud, Nonlinear dielectric susceptibilities: accurate determination of the growing correlation volume in a supercooled liquid. Phys. Rev. B 84, 104204 (2011)

    Article  CAS  Google Scholar 

  71. Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, ed. by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos (Oxford University Press, Oxford, 2011)

    Google Scholar 

  72. C.M. Roland, R. Casalini, R. Bergman, J. Mattsson, Role of hydrogen bonds in the supercooled dynamics of glass-forming liquids at high pressures. Phys. Rev. B 77, 012201 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Roland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roland, C.M., Fragiadakis, D. (2018). Dynamic Correlation Under Isochronal Conditions. In: Richert, R. (eds) Nonlinear Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-77574-6_8

Download citation

Publish with us

Policies and ethics