Skip to main content

Nonresonant Spectral Hole Burning in Liquids and Solids

  • Chapter
  • First Online:
Book cover Nonlinear Dielectric Spectroscopy

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

A review of nonresonant spectral hole burning (NHB) is given. NHB utilizes a large-amplitude, low-frequency pump oscillation in an externally applied field to modify the response of a sample nonlinearly, then a small probe step is applied to measure its modified response. When combined with other techniques, NHB indicates that the non-exponential relaxation in most substances comes from an ensemble of independently relaxing regions, with length scales on the order of nanometers. Various models are presented, focusing on a “box” model that gives excellent agreement with NHB measurements, often with no adjustable parameters. The box model is based on energy absorption that changes the local “fictive” temperature of slow degrees of freedom in spectrally selected regions, with a return to equilibrium only after this excess energy flows into the heat bath. A physical foundation for such thermodynamic heterogeneity is presented, based on concepts from nanothermodynamics. Guided by this approach, a Landau-like theory and Ising-spin model are described that yield several features found in glassforming liquids. Examples of results from NHB are shown, with special emphasis on dielectric hole burning (DHB) of liquids and magnetic hole burning (MHB) of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Scher, M.F. Shlesinger, J.T. Bendler, Time-scale invariance in transport and relaxation. Phys. Today 44, 26 (1991)

    Article  Google Scholar 

  2. W. Weber, Ueber die Elasticität der Seidenfäden. Pogg. Ann. Phys. 24, 711 (1835)

    Google Scholar 

  3. F. Kohlrausch, Ueber die elastische Nachwirkung bei der Torsion. Pogg. Ann. Phys. 114, 337 (1863)

    Article  Google Scholar 

  4. F. Kohlrausch, Beiträge zur Kenntniß der elastischen Nachwirkung. Pogg. Ann. Phys. 128, 1 (1866)

    Google Scholar 

  5. G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970)

    Article  CAS  Google Scholar 

  6. R.V. Chamberlin, G. Mozurkewich, R. Orbach, Time decay of the remanent magnetization in spin-glasses. Phys. Rev. Lett. 52, 867 (1984)

    Article  CAS  Google Scholar 

  7. M. Cardona, R.V. Chamberlin, W. Marx, The history of the stretched exponential function. Ann. Phys. (Leipzig) 16, 842 (2007)

    Article  Google Scholar 

  8. R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche. Pogg. Ann. Phys. 91, 56 (1854)

    Article  Google Scholar 

  9. U. Grigull, Newton’s temperature scale and the law of cooling. Wärme- und Stoffübertragung. 18, 195 (1984)

    Article  Google Scholar 

  10. G. Williams, M. Cook, P.J. Hains, Molecular motion in amorphous polymers consideration of the mechanism for α, β and (αβ) dielectric relaxations. J. Chem. Soc. Faraday Trans. II 2, 1045 (1972)

    Article  Google Scholar 

  11. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  12. E. von Schweidler, Studien über die Anomalien im Verhalten der Dielektrika. Ann. Phys. 24, 711 (1907)

    Article  Google Scholar 

  13. K.W. Wagner, Zur Theorie der unvollkommenen Dielektrika. Ann. Phys. 345, 817 (1913)

    Article  Google Scholar 

  14. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941)

    Article  CAS  Google Scholar 

  15. D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19, 1484 (1951)

    Article  CAS  Google Scholar 

  16. C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization, vol. II (Elsevier, Amsterdam, 1978)

    Google Scholar 

  17. E. Donth, The size of cooperatively rearranging regions at the glass transition. J. Non-Cryst. Solids 53, 325 (1982)

    Article  CAS  Google Scholar 

  18. R.V. Chamberlin, D.N. Haines, Percolation model for relaxation in random systems. Phys. Rev. Lett. 65, 2197 (1990)

    Article  PubMed  CAS  Google Scholar 

  19. V.I. Yukalov, Phase transitions and heterophase fluctuations. Phys. Rep. 208, 395 (1991)

    Article  CAS  Google Scholar 

  20. R.V. Chamberlin, R. Böhmer, E. Sanchez, C.A. Angell, Signature of ergodicity in the dynamic response of amorphous systems. Phys. Rev. B 46, 5787 (1992)

    Article  CAS  Google Scholar 

  21. R.V. Chamberlin, M.R. Scheinfein, Slow magnetic relaxation in iron: a ferromagnetic liquid. Science 260, 1098 (1993)

    Article  PubMed  CAS  Google Scholar 

  22. C. Hansen, R. Richert, E.W. Fischer, Dielectric loss spectra of organic glass formers and Chamberlin cluster model. J. Non-Cryst. Solids 215, 293 (1997)

    Article  CAS  Google Scholar 

  23. R.V. Chamberlin, Mesoscopic mean-field theory for supercooled liquids and the glass transition. Phys. Rev. Lett. 82, 2520 (1999)

    Article  CAS  Google Scholar 

  24. G. Biroli, J.P. Bouchaud, K. Miyazaki, D.R. Reichman, Inhomogeneous mode-coupling theory and growing dynamic length in supercooled liquids. Phys. Rev. Lett. 97, 195701 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. A. Heuer, Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport. J. Phys.: Condens. Matter 20, 373101 (2008)

    Google Scholar 

  26. C.T. Rogers, R.A. Buhrman, Composition of 1/f noise in metal-insulator-metal tunnel junctions. Phys. Rev. Lett. 53, 1272 (1984)

    Article  Google Scholar 

  27. K. Schmidt-Rohr, H.W. Spiess, Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett. 66, 3020 (1991)

    Article  CAS  PubMed  Google Scholar 

  28. R. Böhmer, E. Sanchez, C.A. Angell, AC technique for simultaneous study of local and global linear responses near the glass transition: the case of doped Ca2+/K+/NO3. J. Phys. Chem. 96, 9089 (1992)

    Article  Google Scholar 

  29. A. Barkatt, C.A. Angell, Use of structural probe ions for relaxation studies in glasses. 2. Temperature-jump and temperature-ramp studies of cobalt(II) in nitrate glasses. J. Phys. Chem. 82, 1972 (1978)

    Article  CAS  Google Scholar 

  30. R. Richert, Origin of dispersion in dipolar relaxations of glasses. Chem. Phys. Lett. 216, 223 (1993)

    Article  CAS  Google Scholar 

  31. M.T. Cicerone, M.D. Ediger, Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys. 103, 5684 (1995)

    Article  CAS  Google Scholar 

  32. E. Vidal Russell, N.E. Israeloff, Direct observation of molecular cooperativity near the glass transition. Nature 408, 695 (2000)

    Article  Google Scholar 

  33. X. Qiu, T. Proffen, J.F. Mitchell, S.J.L. Billinge, Orbital correlations in the pseudocubic O and rhombohedral R phases of LaMnO3. Phys. Rev. Lett. 94:177203 (2005). Data from this study using neutron scattering to investigate correlations in LaMnO3 are presented in Ref. [35]. It is believed that abrupt loss of dynamical correlation across interatomic distances could be a general phenomenon in crystals, Billinge SJL, private communication

    Google Scholar 

  34. Discussion regarding the use of the pair distribution function to study static and dynamic correlations in a variety of systems is given in C. A. Young, A. L. Goodwin, Applications of pair distribution function methods to contemporary problems in materials chemistry. J. Mater. Chem. 21, 6464 (2011)

    Article  CAS  Google Scholar 

  35. R.V. Chamberlin, Monte Carlo simulations including energy from an entropic force. Phys. A 391, 5384 (2012)

    Article  CAS  Google Scholar 

  36. R. Böhmer, Nanoscale heterogeneity in glass-forming liquids: experimental advances. Curr. Opin. Solid State Mater. Sci. 3, 378 (1998)

    Article  Google Scholar 

  37. R. Böhmer, R.V. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S.C. Kuebler, R. Richert, B. Schiener, H. Sillescu, H.W. Spiess, U. Tracht, M. Wilhelm, Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J. Non-Cryst. Solids 235–237, 1 (1998)

    Article  Google Scholar 

  38. H. Sillescu, Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81 (1999)

    Article  CAS  Google Scholar 

  39. M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  PubMed  CAS  Google Scholar 

  40. R. Richert, Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys.: Condens. Matter 14, R703 (2002)

    CAS  Google Scholar 

  41. S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, Comparative study of the NMR length scale of dynamic heterogeneities of three different glass-formers. J. Non-Cryst. Solids 307, 208 (2002)

    Article  Google Scholar 

  42. L. Hong, V.N. Novikov, A.P. Sokolov, Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids. Phys. Rev. E 83, 061508 (2011)

    Article  CAS  Google Scholar 

  43. L.J. Kaufman, Heterogeneity in single-molecule observables in the study of supercooled liquids. Annu. Rev. Phys. Chem. 64, 177 (2013)

    Article  PubMed  CAS  Google Scholar 

  44. M. Meissner, K. Spitzmann, Experimental evidence on time-dependent specific heat in vitreous silica. Phys. Rev. Lett. 46, 265 (1981)

    Article  CAS  Google Scholar 

  45. P.K. Dixon, S.R. Nagel, Frequency-dependent specific heat and thermal conductivity at the glass transition in o-terphenyl mixtures. Phys. Rev. Lett. 61, 341 (1988)

    Article  PubMed  CAS  Google Scholar 

  46. R. Böhmer, B. Schiener, J. Hemberger, R.V. Chamberlin, Pulsed dielectric spectroscopy of supercooled liquids. Z. Phys. B Condensed Matter. 99, 91 (1995); R. Böhmer, B. Schiener, J. Hemberger, R.V. Chamberlin, Erratum. Z Phys. B Condensed Matter. 99, 624 (1996)

    Article  Google Scholar 

  47. L. Boltzmann, Zur Theorie der elastischen Nachwirkung. Wiener Sitzungsber 70, 275 (1874). See, e.g., page 622 of the collection of papers available under https://phaidra.univie.ac.at/view/o:63647

  48. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford, 1987)

    Google Scholar 

  49. O. Kircher, R. Böhmer, G. Hinze, Pseudo-stochastic multiple-pulse excitation in dielectric spectroscopy: application to a relaxor ferroelectric. J. Phys.: Condens. Matter. 15, S1069 (2003)

    CAS  Google Scholar 

  50. R.V. Chamberlin, Heterogeneity in the primary response of amorphous and crystalline materials. Proposal to the National Science Foundation (1994)

    Google Scholar 

  51. B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science 274, 752 (1996)

    Article  CAS  Google Scholar 

  52. N. Bloembergen, E.M. Purcell, R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679 (1948)

    Article  CAS  Google Scholar 

  53. S. Völker, Hole-burning spectroscopy. Annu. Rev. Phys. Chem. 40, 499 (1989)

    Article  Google Scholar 

  54. N.O. Birge, S.R. Nagel, Specific heat spectroscopy of the glass transition. Phys. Rev. Lett. 54, 2674 (1985)

    Article  PubMed  CAS  Google Scholar 

  55. T. Christensen, The frequency-dependence of the specific-heat at the glass transition. J. Phys. (Paris) 46, C8–635 (1985)

    Article  Google Scholar 

  56. W. Knaak, M. Meissner, Time-dependent specific heat of vitreous silica between 0.1 and 1 K, in Phonon Scattering in Condensed Matter, ed. by W. Laßmann, S. Döttinger (Springer, Berlin, 1984), pp. 416–418

    Chapter  Google Scholar 

  57. B. Mertz, J.F. Berret, R. Böhmer, A. Loidl, M. Meissner, W. Knaak, Calorimetric investigations of (NaCN)1-x(KCN)x orientational glasses. Phys. Rev. B 42, 7596 (1990)

    Article  CAS  Google Scholar 

  58. N. Sampat, M. Meissner, Time-dependent specific heat of crystals and glasses at low temperatures, in Die Kunst of Phonons, ed. by T. Paszkiewicz, K. Rapcewicz (Springer, Boston, 1994), pp. 105–112

    Chapter  Google Scholar 

  59. see e.g. C.P. Slichter, Principles of Magnetic Resonance (Chap. 6), 3rd edn. (Springer, Berlin, 1990)

    Google Scholar 

  60. K. Duvvuri, R. Richert, Dielectric hole burning in the high frequency wing of supercooled glycerol. J. Chem. Phys. 118, 1356–1363 (2003)

    Article  CAS  Google Scholar 

  61. R.V. Chamberlin, Nonresonant spectral hole burning in a spin glass. Phys. Rev. Lett. 83, 5134 (1999)

    Article  CAS  Google Scholar 

  62. R.V. Chamberlin, B. Schiener, R. Böhmer, Slow dielectric relaxation of supercooled liquids investigated by nonresonant spectral hole burning. Mater. Res. Soc. Symp. Proc. 455, 117 (1997)

    Article  CAS  Google Scholar 

  63. R.V. Chamberlin, Experiments and theory of the nonexponential relaxation in liquids, glasses, polymers and crystals. Phase Transitions 65, 169 (1998)

    Article  CAS  Google Scholar 

  64. B. Schiener, R.V. Chamberlin, G. Diezemann, R. Böhmer, Nonresonant dielectric hole burning spectroscopy of supercooled liquids. J. Chem. Phys. 107, 7746 (1997)

    Article  CAS  Google Scholar 

  65. R. Richert, Spectral selectivity in the slow β-relaxation of a molecular glass. Europhys. Lett. 54, 767 (2001)

    Article  CAS  Google Scholar 

  66. T. Blochowicz, E.A. Rössler, Nonresonant dielectric hole burning in neat and binary organic glass formers. J. Chem. Phys. 122, 224511 (2005); see also T. Blochowicz, Broadband Dielectric Spectroscopy in Neat and Binary Molecular Glass Formers: frequency and Time Domain Spectroscopy, Non-Resonant Spectral Hole Burning. Dissertation, Universität Bayreuth (2003)

    Google Scholar 

  67. R. Richert, S. Weinstein, Nonlinear dielectric response and thermodynamic heterogeneity. Phys. Rev. Lett. 97, 095703 (2006)

    Article  PubMed  CAS  Google Scholar 

  68. R. Böhmer, G. Diezemann, Principles and applications of pulsed dielectric spectroscopy and nonresonant dielectric hole burning, in Broadband dielectric spectroscopy, ed. by F. Kremer, A. Schönhals (Springer, Berlin, 2002), pp. 523–569

    Google Scholar 

  69. R. Richert, R. Böhmer, Heterogeneous and homogeneous diffusivity in an ion-conducting glass. Phys. Rev. Lett. 83, 4337 (1999)

    Article  CAS  Google Scholar 

  70. R. Richert, The modulus of dielectric and conductive materials and its modification by high electric fields. J. Non-Cryst. Solids 305, 29 (2002)

    Article  CAS  Google Scholar 

  71. O. Kircher, B. Schiener, R. Böhmer, Long-lived dynamic heterogeneity in a relaxor ferroelectric. Phys. Rev. Lett. 81, 4520 (1998)

    Article  CAS  Google Scholar 

  72. W. Kleemann, V. Bobnar, J. Dec, P. Lehnen, R. Pankrath, S.A. Prosandeev, Relaxor properties of dilute and concentrated polar solid solutions. Ferroelectrics 261, 43 (2001)

    Article  CAS  Google Scholar 

  73. O. Kircher, G. Diezemann, R. Böhmer, Nonresonant dielectric hole-burning spectroscopy on a titanium modified lead magnesium niobate ceramic. Phys. Rev. B 64, 054103 (2001)

    Article  CAS  Google Scholar 

  74. T. El Goresy, O. Kircher, R. Böhmer, Nonresonant hole burning spectroscopy of the relaxor ferroelectric PLZT. Solid State Commun. 121, 485 (2002)

    Article  Google Scholar 

  75. X. Shi, G.B. McKenna, Mechanical hole burning spectroscopy: evidence for heterogeneous dynamics in polymer systems. Phys. Rev. Lett. 94, 157801 (2005)

    Article  PubMed  CAS  Google Scholar 

  76. X.F. Shi, G.B. McKenna, Mechanical hole-burning spectroscopy: demonstration of hole burning in the terminal relaxation regime. Phys. Rev. B 73, 014203 (2006)

    Article  CAS  Google Scholar 

  77. Q. Qin, H. Doen, G.B. McKenna, Mechanical Spectral Hole Burning in polymer solutions. J. Polym. Sci. Part B: Polym. Phys. 47, 2047 (2009)

    Article  CAS  Google Scholar 

  78. N. Shamim, G.B. McKenna, Mechanical spectral hole burning in polymer solutions: comparison with large amplitude oscillatory shear fingerprinting. J. Rheol. 58, 43 (2014)

    Article  CAS  Google Scholar 

  79. M. Wilhelm, K. Hyun, Nonlinear oscillatory shear mechanical response, in Nonlinear Dielectric Spectroscopy, ed. by R. Richert (Springer, this book, 2018)

    Google Scholar 

  80. S. Weinstein, R. Richert, Heterogeneous thermal excitation and relaxation in supercooled liquids. J. Chem. Phys. 123, 224506 (2005)

    Article  PubMed  CAS  Google Scholar 

  81. R. Richert, Nonlinear dielectric effects in liquids: a guided tour. J. Phys.: Condens. Matter 29, 363001 (2017)

    Google Scholar 

  82. K.R. Jeffrey, R. Richert, K. Duvvuri, Dielectric hole burning: signature of dielectric and thermal relaxation time heterogeneity. J. Chem. Phys. 119, 6150 (2003)

    Article  CAS  Google Scholar 

  83. S. Capaccioli, D. Prevosto, A. Best, A. Hanewald, T. Pakula, Applications of the rheo-dielectric technique. J. Non-Cryst. Solids 353, 4267 (2007)

    Article  CAS  Google Scholar 

  84. T. Uneyama, Y. Masubuchi, K. Horio, Y. Matsumiya, H. Watanabe, J.A. Pathak, C.M. Roland, A theoretical analysis of rheodielectric response of type-A polymer chains. J. Polym. Sci. Part B: Polym. Phys. 47, 1039 (2009)

    Article  CAS  Google Scholar 

  85. K. Horio, T. Uneyama, Y. Matsumiya, Y. Masubuchi, H. Watanabe, Rheo-dielectric responses of entangled cis-polyisoprene under uniform steady shear and LAOS. Macromolecules 47, 246 (2014)

    Article  CAS  Google Scholar 

  86. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)

    Google Scholar 

  87. T. Matsuo, H. Suga, S. Seki, Dielectric loss measurement by differential thermal analysis (DTA). Bull. Chem. Soc. Jpn. 39, 1827 (1966)

    Article  CAS  Google Scholar 

  88. A. Heuer, Information content of multitime correlation functions for the interpretation of structural relaxation in glass-forming systems. Phys. Rev. E 56, 730 (1997)

    Article  CAS  Google Scholar 

  89. K. Schröter, E. Donth, Viscosity and shear response at the dynamic glass transition of glycerol. J. Chem. Phys. 113, 9101 (2000)

    Article  Google Scholar 

  90. L.-M. Wang, R. Richert, Measuring the configurational heat capacity of liquids. Phys. Rev. Lett. 99, 185701 (2007)

    Article  PubMed  CAS  Google Scholar 

  91. L.-M. Wang, R. Richert, Reply to comment on “Measuring the configurational heat capacity of liquids”. Phys. Rev. Lett. 104, 239603 (2010)

    Article  CAS  Google Scholar 

  92. R. Richert, Reverse calorimetry of a supercooled liquid: propylene carbonate. Thermochim. Acta 522, 28 (2011)

    Article  CAS  Google Scholar 

  93. I.M. Hodge, Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169, 211 (1994)

    Article  CAS  Google Scholar 

  94. A. Khalife, U. Pathak, R. Richert, Heating liquid dielectrics by time dependent fields. Eur. Phys. J. B 83, 429 (2011)

    Article  CAS  Google Scholar 

  95. C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Evidence of growing spatial correlations at the glass transition from nonlinear response experiments. Phys. Rev. Lett. 104, 165703 (2010)

    Article  CAS  PubMed  Google Scholar 

  96. R. Richert, Dielectric hole burning in an electrical circuit analog of a dynamically heterogeneous system. Phys. A 322, 143 (2003)

    Article  Google Scholar 

  97. H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958)

    Google Scholar 

  98. H. Wagner, R. Richert, Dielectric relaxation of the electric field in poly(vinylacetate): a time domain study in the range 10−3 s to 106 s. Polymer 38, 255 (1997)

    Article  CAS  Google Scholar 

  99. J. Jäckle, R. Richert, Why retardation takes more time than relaxation in a linear system. Phys. Rev. E 77, 031201 (2008)

    Article  CAS  Google Scholar 

  100. A.R. Young-Gonzales, S. Samanta, R. Richert, Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime. J. Chem. Phys. 143, 104504 (2015)

    Article  PubMed  CAS  Google Scholar 

  101. S. Weinstein, R. Richert, Nonlinear features in the dielectric behavior of propylene glycol. Phys. Rev. B 75, 064302 (2007)

    Article  CAS  Google Scholar 

  102. W. Huang, R. Richert, Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion. J. Chem. Phys. 130, 194509 (2009)

    Article  PubMed  CAS  Google Scholar 

  103. S. Samanta, R. Richert, Limitations of heterogeneous models of liquid dynamics: very slow rate exchange in the excess wing. J. Chem. Phys. 140, 054503 (2014)

    Article  PubMed  CAS  Google Scholar 

  104. W. Huang, R. Richert, Response to “Comment on ‘Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion’”. [J. Chem. Phys. 137:027101 (2012)] J. Chem. Phys. 137:027102

    Google Scholar 

  105. G. Diezemann, Response theory for nonresonant hole burning: stochastic dynamics. Europhys. Lett. 53, 604 (2001)

    Article  CAS  Google Scholar 

  106. R. Richert, Molecular dynamics analysed in terms of continuous measures of dynamic heterogeneity. J. Non-Cryst. Solids 235–237, 41 (1998)

    Article  Google Scholar 

  107. M. Winterlich, G. Diezemann, H. Zimmermann, R. Böhmer, Microscopic origin of the nonexponential dynamics in a glassy crystal. Phys. Rev. Lett. 91, 235504 (2003)

    Article  PubMed  CAS  Google Scholar 

  108. M. Storek, J. Tilly, K.R. Jeffrey, R. Böhmer, Four-time 7Li stimulated-echo spectroscopy for the study of dynamic heterogeneities: application to lithium borate glass. J. Magn. Reson. 282, 1 (2017)

    Article  PubMed  CAS  Google Scholar 

  109. A. Wagner, H. Kliem, A comment on dielectric hole burning. J. Chem. Phys. 111, 1043 (1999)

    Article  CAS  Google Scholar 

  110. G. Diezemann, Stochastic models of higher-order dielectric responses, in Nonlinear Dielectric Spectroscopy, ed. by R. Richert (Springer, this book, 2018)

    Google Scholar 

  111. G. Diezemann, Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models. Phys. Rev. E 68, 021105 (2003)

    Article  CAS  Google Scholar 

  112. U. Häberle, G. Diezemann, Nonresonant holeburning in the Terahertz range: Brownian oscillator model. J. Chem. Phys. 120, 1466 (2004)

    Article  PubMed  CAS  Google Scholar 

  113. U. Häberle, G. Diezemann, Kerr effect as a tool for the investigation of dynamic heterogeneities. J. Chem. Phys. 124, 044501 (2006)

    Article  PubMed  CAS  Google Scholar 

  114. U. Häberle, G. Diezemann, Dynamic Kerr effect responses in the Terahertz-range. J. Chem. Phys. 122, 184517 (2005)

    Article  PubMed  CAS  Google Scholar 

  115. G.E.P. Box, Robustness in the strategy of scientific model building, in Robustness in Statistics, ed. by R.L. Launer, G.N. Wilkerson (Academic Press, New York, 1979), pp. 201–236

    Chapter  Google Scholar 

  116. T.L. Hill, Thermodynamics of small systems. J. Chem. Phys. 36, 3182 (1962)

    Article  CAS  Google Scholar 

  117. T.L. Hill, Thermodynamics of Small Systems (parts I and II) (Dover, Mineola, NY, 1994)

    Google Scholar 

  118. T.L. Hill, A different approach to nanothermodynamics. Nano Lett. 1, 273 (2001)

    Article  CAS  Google Scholar 

  119. R.V. Chamberlin, Mean-field cluster model for the critical behaviour of ferromagnets. Nature 408, 337 (2000)

    Article  PubMed  CAS  Google Scholar 

  120. R.V. Chamberlin, The big world of nanothermodynamics. Entropy 17, 52 (2015)

    Article  CAS  Google Scholar 

  121. G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)

    Article  CAS  Google Scholar 

  122. G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J. Phys.: Condens. Matter 17, R1143 (2005)

    CAS  Google Scholar 

  123. A. Wisitsorasak, P.G. Wolynes, Dynamical heterogeneity of the glassy state. J. Phys. Chem. 118, 7835 (2014)

    Article  CAS  Google Scholar 

  124. U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Length scale of dynamic heterogeneity at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727 (1998)

    Article  CAS  Google Scholar 

  125. K. Binder, Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B 43, 119 (1981)

    Article  Google Scholar 

  126. R.V. Chamberlin, G.H. Wolf, Fluctuation-theory constraint for extensive entropy in Monte-Carlo simulations. Eur. Phys. J. B 67, 495 (2009)

    Article  CAS  Google Scholar 

  127. R.P. Feynman, Statistical Mechanics: A Set of Lectures (Westview Press, Boulder, CO, 1998), p. 1

    Google Scholar 

  128. A. Einstein, Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys. 33, 1275 (1910)

    Article  CAS  Google Scholar 

  129. L. Landau, The theory of phase transitions. Nature 138, 840 (1936)

    Article  CAS  Google Scholar 

  130. M.J. Klein, L. Tisza, Theory of critical fluctuations. Phys. Rev. 76, 1841 (1949)

    Article  Google Scholar 

  131. S.K. Ma, Modern theory of critical phenomena (W.A. Benjamin, Reading, MA, 1976)

    Google Scholar 

  132. R.V. Chamberlin, Critical behavior from Landau theory in nanothermodynamic equilibrium. Phys. Lett. A 315, 312 (2003)

    Article  CAS  Google Scholar 

  133. M.R.H. Javaheri, R.V. Chamberlin, A free-energy landscape picture and Landau theory for the dynamics of disordered materials. J. Chem. Phys. 125, 154503 (2006)

    Article  PubMed  CAS  Google Scholar 

  134. R.V. Chamberlin, Reducing low-frequency noise during reversible fluctuations. Eur. Phys. J. Spec. Topics 226, 365 (2017)

    Article  Google Scholar 

  135. X.H. Qiu, M.D. Ediger, Length scale of dynamic heterogeneity in supercooled D-Sorbitol: comparison to model predictions. J. Phys. Chem. B 107, 459 (2003)

    Article  CAS  Google Scholar 

  136. C.A. Angell, D.L. Smith, Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg. J. Phys. Chem. 86, 3845 (1982)

    Article  CAS  Google Scholar 

  137. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201 (1993)

    Article  Google Scholar 

  138. S. Samanta, R. Richert, Dynamics of glass-forming liquids. XVII. Does entropy control structural relaxation times. J. Chem. Phys. 142, 044504 (2015)

    Article  PubMed  CAS  Google Scholar 

  139. F. Stickel, E.W. Fischer, R. Richert, Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity and viscosity data. J. Chem. Phys. 104, 2043 (1996)

    Article  CAS  Google Scholar 

  140. R.V. Chamberlin, J.V. Vermaas, G.H. Wolf, Beyond the Boltzmann factor for corrections to scaling in ferromagnetic materials and critical fluids. Eur. Phys. J. B 71, 1 (2009)

    Article  CAS  Google Scholar 

  141. R.V. Chamberlin, D.M. Nasir, 1/f noise from the laws of thermodynamics for finite-size fluctuations. Phys. Rev. E 90, 012142 (2014)

    Article  CAS  Google Scholar 

  142. R.V. Chamberlin, S. Abe, B.F. Davis, P.E. Greenwood, A.S.H. Shevchuk, Fluctuation theorems and 1/f noise from a simple matrix. Eur. Phys. J. B 89, 185 (2016)

    Article  CAS  Google Scholar 

  143. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Chap. 44-1) (Addison Wesley, Reading, MA, 1963)

    Google Scholar 

  144. R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Dynamics of supercooled liquids and glassy solids. Prog. Nucl. Magn. Reson. Spectrosc. 39, 191 (2001)

    Article  Google Scholar 

  145. L. Wu, Relaxation mechanisms in a benzyl chloride–toluene glass. Phys. Rev. B 43, 9906 (1991)

    Article  CAS  Google Scholar 

  146. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991)

    Google Scholar 

  147. B. Schiener et al (1995) unpublished

    Google Scholar 

  148. R.A. Webb, New technique for improved low-temperature SQUID NMR measurements. Rev. Sci. Instr. 48, 1585 (1977)

    Article  Google Scholar 

  149. R.V. Chamberlin, L.A. Moberly, O.G. Symko, High-sensitivity magnetic-resonance by SQUID detection. J. Low Temp. Phys. 35, 337 (1979)

    Article  CAS  Google Scholar 

  150. B.T. Saam, M.S. Conradi, Low-frequency NMR polarimeter for hyperpolarized gases. J. Magn. Reson. 134, 67 (1998)

    Article  PubMed  CAS  Google Scholar 

  151. S. Ghosh, R. Parthasarathy, T.F. Rosenbaum, G. Aeppli, Coherent spin oscillations in a disordered magnet. Science 296, 2195 (2002)

    Article  PubMed  CAS  Google Scholar 

  152. A. Berton, J. Chaussy, J. Odin, J. Peyrard, J.J. Prejean, J. Souletie, Apparent specific heat of a spin glass (Au Fe 6 at %) in presence of a remanent magnetization and associated energy and magnetization relaxations. Solid State Commun. 37, 241 (1981)

    Article  CAS  Google Scholar 

  153. W.E. Fogle, J.D. Boyer, N.E. Phillips, J. Van Curen, Calorimetric investigation of spin-glass ordering in CuMn. Phys. Rev. Lett. 47, 352 (1981)

    Article  CAS  Google Scholar 

  154. R. Richert, Effects of strong static fields on the dielectric relaxation of supercooled liquids, in Nonlinear Dielectric Spectroscopy, ed. by R. Richert (Springer, this book, 2018)

    Google Scholar 

  155. However, homogeneous behavior was found from low-frequency NHB measurements on an ion conductor, see Ref. [69]

    Google Scholar 

Download references

Acknowledgements

Current work in the general area covered in this article is supported by the Deutsche Forschungsgemeinschaft under Grant No. BO1301/14-1. We thank Thomas Blochowicz for kindly sharing data and figures from Ref. [66].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph V. Chamberlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chamberlin, R.V., Böhmer, R., Richert, R. (2018). Nonresonant Spectral Hole Burning in Liquids and Solids. In: Richert, R. (eds) Nonlinear Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-77574-6_5

Download citation

Publish with us

Policies and ethics