Skip to main content

Nonlinear Dielectric Response of Polar Liquids

  • Chapter
  • First Online:
Book cover Nonlinear Dielectric Spectroscopy

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The linear dielectric constant of a polar molecular material is mostly the function of the molecular dipole moment and of the binary correlations between the dipoles. The dielectric response becomes nonlinear for a sufficiently strong electric field gaining a dielectric decrement proportional, in the lowest order, to the squared field magnitude. The alteration of the dielectric response with the electric field is governed by a combination of binary and three- and four-particle dipolar correlations and thus provides new structural information absent in the linear response. Similar higher order correlations between the molecular dipoles enter the temperature derivative of the linear dielectric constant. Mean-field models, often applied to construct theories of linear dielectric response, fail to account for these multi-particle correlations and do not provide an adequate description of the nonlinear dielectric effect. Perturbation theories of polar liquids offer a potential resolution. They have shown promise in describing the elevation of the glass transition temperature by an external electric field. The application of such models reveals a fundamental distinction in polarization of low-temperature glass formers close to the glass transition and high-temperature, low-viscous liquids. The dielectric response of the former is close to the prescription of Maxwell’s electrostatics where surface charge is created at any dielectric interface. On the contrary, rotations of interfacial dipoles are allowed in high-temperature liquids, and they effectively average the surface charge out to zero. Models capturing this essential physics will be required for the theoretical description of the nonlinear dielectric effect in these two types of polar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)

    Article  CAS  Google Scholar 

  2. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1996)

    Google Scholar 

  3. C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995)

    Article  CAS  PubMed  Google Scholar 

  4. C.J.F. Böttcher, Theory of Electric Polarization, vol. 1 (Elsevier, Amsterdam, 1973)

    Google Scholar 

  5. D.M. Burland, R.D. Miller, C.A. Walsh, Second-order nonlinearity in poled-polymer systems. Chem. Rev. 94, 31–75 (1994)

    Article  CAS  Google Scholar 

  6. D.Y.C. Chan, D.J. Mitchell, B.W. Ninham, A model of solvent structure around ions. J. Chem. Phys. 70(6), 2946–2957 (1979)

    Article  CAS  Google Scholar 

  7. A. Chełkowski, Dielectric Physics (Elsevier Scientific Pub. Co., Amsterdam, 1980)

    Google Scholar 

  8. Y. Chen, H.I. Okur, N. Gomopoulos, C. Macias-Romero, P.S. Cremer, P.B. Petersen, G. Tocci, D.M. Wilkins, C. Liang, M. Ceriotti, S. Roke, Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water. Sci. Adv. 2(4), e1501891 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  9. T. Christensen, N.B. Olsen, Determination of the frequency-dependent bulk modulus of glycerol using a piezoelectric spherical-shell. Phys. Rev. B 49(21), 15396–15399 (1994)

    Article  CAS  Google Scholar 

  10. K. Clays, A. Persoons, Hyper-Rayleigh scattering in solution. Phys. Rev. Lett. 66, 2980–2983 (1991)

    Article  CAS  PubMed  Google Scholar 

  11. L. Comez, D. Fioretto, F. Scarponi, G. Monaco, Density fluctuations in the intermediate glass-former glycerol: a Brillouin light scattering study. J. Chem. Phys. 119(12), 6032 (2003)

    Article  CAS  Google Scholar 

  12. P. Debye, Dielektrische Sättigung und Behinderung der freien Rotation in Flüssigheiten. Z. Phys. Chem. 36, 193–194 (1935)

    CAS  Google Scholar 

  13. J.L. Déjardin, Y.P. Kalmykov, Nonlinear dielectric relaxation of polar molecules in a strong ac electric field: steady state response. Phys. Rev. E 61(2), 1211–1217 (2000).

    Article  Google Scholar 

  14. G.I. Egorov, D.M. Makarov, Volumetric properties of binary liquid-phase mixture of (water+glycerol) at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa. J. Chem. Thermodyn. 79, 135–158 (2014)

    Article  CAS  Google Scholar 

  15. R.P. Feynman, Statistical Mechanics (Westview Press, Boulder, CO, 1998)

    Google Scholar 

  16. H.S. Frank, Thermodynamics of a fluid substance in the electrostatic field. J. Chem. Phys. 23(11), 2023–2032 (1955)

    Article  CAS  Google Scholar 

  17. H. Fröhlich, Theory of Dielectrics (Oxford University Press, Oxford, 1958)

    Google Scholar 

  18. R.L. Fulton, On the theory of nonlinear dielectrics. J. Chem. Phys. 78(11), 6865–6876 (1983)

    Article  CAS  Google Scholar 

  19. R.L. Fulton, The nonlinear dielectric behavior of water: comparisons of various approaches to the nonlinear dielectric increment. J. Chem. Phys. 130(20), 204503 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. R.L. Fulton, Linear and nonlinear dielectric theory for a slab: the connections between the phenomenological coefficients and the susceptibilities. J. Chem. Phys. 145(8), 084105 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1997)

    Google Scholar 

  22. C.G. Gray, K.E. Gubbins, Theory of Molecular Liquids (Clarendon Press, Oxford, 1984)

    Google Scholar 

  23. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 4th edn. (Academic Press, Amsterdam, 2013)

    Google Scholar 

  24. J.S. Høye, G. Stell, Statistical mechanics of polar systems. II. J. Chem. Phys. 64(5), 1952–1966 (1976)

    Article  Google Scholar 

  25. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    Google Scholar 

  26. G.P. Johari, Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation. J. Chem. Phys. 138(15), 154503 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. J.G. Kirkwood, The dielectric polarization of polar liquids. J. Chem. Phys. 7(10), 911–919 (1939)

    Article  CAS  Google Scholar 

  28. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  CAS  Google Scholar 

  29. P.G. Kusalik, Computer simulation study of a highly polar fluid under the influence of static electric fields. Mol. Phys. 81(1), 199–216 (1994)

    Article  CAS  Google Scholar 

  30. D.P. Landau, K. Binder, Monte Carlo simulations in statistical physics (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)

    Google Scholar 

  32. B. Larsen, J.C. Rasaiah, G. Stell, Thermodynamic perturbation theory for multipolar and ionic liquids. Mol. Phys. 33, 987 (1977)

    Article  CAS  Google Scholar 

  33. P. Linse, G. Karlström, Dipolar order in molecular fluids: II. Molecular influence. J. Stat. Phys. 145(2), 418–440 (2011)

    Article  CAS  Google Scholar 

  34. P. Lunkenheimer, M. Michl, T. Bauer, A. Loidl, Investigation of nonlinear effects in glassy matter using dielectric methods. Eur. Phys. J. Special Topics 226(14), 3157–3183 (2017)

    Article  Google Scholar 

  35. P. Madden, D. Kivelson, A consistent molecular treatment of dielectric phenomena. Adv. Chem. Phys. 56, 467–566 (1984)

    CAS  Google Scholar 

  36. Y. Marcus, Electrostriction in electrolyte solutions. Chem. Rev. 111(4), 2761–2783 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. Y. Marcus, Ions in Solution and their Solvation (Wiley, New Jersey, 2015)

    Book  Google Scholar 

  38. Y. Marcus, G. Hefter, On the pressure and electric field dependencies of the relative permittivity of liquids. J. Sol. Chem. 28(5), 575–592 (1999)

    Article  CAS  Google Scholar 

  39. D.R. Martin, A.D. Friesen, D.V. Matyushov, Electric field inside a “Rossky cavity” in uniformly polarized water. J. Chem. Phys. 135, 084514 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. D.R. Martin, D.V. Matyushov, Microscopic fields in liquid dielectrics. J. Chem. Phys. 129, 174508 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. D.R. Martin, D.V. Matyushov, Terahertz absorption of lysozyme in solution. J. Chem. Phys. 146, 084502 (2017)

    Article  CAS  Google Scholar 

  42. L.M. Martinez, C.A. Angell, A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. D.V. Matyushov, Electrostatics of liquid interfaces. J. Chem. Phys. 140, 224506 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. D.V. Matyushov, Nonlinear dielectric response of polar liquids. J. Chem. Phys. 142, 244502 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. D.V. Matyushov, Configurational entropy of polar glass formers and the effect of electric field on glass transition. J. Chem. Phys. 145, 034504 (2016)

    Article  CAS  PubMed  Google Scholar 

  46. D.V. Matyushov, Response to “Comment on ‘Nonlinear dielectric response of polar liquids”’ [J. Chem. Phys. 144, 087101 (2016)]. J. Chem. Phys. 144, 087102 (2016)

    Google Scholar 

  47. D.V. Matyushov, R. Richert, Communication: temperature derivative of the dielectric constant gives access to multipoint correlations in polar liquids. J. Chem. Phys. 144, 041102 (2016)

    Article  CAS  PubMed  Google Scholar 

  48. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1. Dover Publications, New York (1954, sec. 63)

    Google Scholar 

  49. M. Neumann, Computer simulation and the dielectric constant at fimite wavelength. Mol. Phys. 57, 97 (1986)

    Article  CAS  Google Scholar 

  50. F. Novelli, S. Ostovar Pour, J. Tollerud, A. Roozbeh, D.R.T. Appadoo, E.W. Blanch, J.A. Davis, Time-domain THz spectroscopy reveals coupled protein-hydration dielectric response in solutions of native and fibrils of human lysozyme. J. Phys. Chem. B 121, 4810–4816 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110–113 (1928)

    Article  CAS  Google Scholar 

  52. L. Onsager, Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)

    Article  CAS  Google Scholar 

  53. F.O. Raineri, H. Resat, H.L. Friedman, Static longitudinal dielectric function of model molecular fluids. J. Chem. Phys. 96, 3068 (1992)

    Article  CAS  Google Scholar 

  54. J.D. Ramshaw, Exsistence of the dielectric constant in regid-dipole fluids: the direct correlation function. J. Chem. Phys. 57, 2684 (1972)

    Article  CAS  Google Scholar 

  55. R. Richert, Supercooled liquids and glasses by dielectric relaxation spectroscopy. Adv. Chem. Phys. 156, 101–195 (2015)

    CAS  Google Scholar 

  56. R. Richert, Nonlinear dielectric effects in liquids: a guided tour. J. Phys.: Cond. Matter 29(36), 363001–363025 (2017)

    Google Scholar 

  57. R. Richert, A.C. Angell, Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configuration entropy. J. Chem. Phys. 108, 9016 (1998)

    Article  CAS  Google Scholar 

  58. S. Samanta, R. Richert, Electrorheological source of nonlinear dielectric effects in molecular glass-forming liquids. J. Phys. Chem. B 120(31), 7737–7744 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. R. Schmid, D.V. Matyushov, Entropy of attractive forces and molecular nonsphericity in real liquids: a measure of structural ordering. J. Phys. Chem. 99, 2393 (1995)

    Article  CAS  Google Scholar 

  60. S. Seyedi, D.R. Martin, D.V. Matyushov (unpublished)

    Google Scholar 

  61. L.P. Singh, R. Richert, Watching hydrogen-bonded structures in an alcohol convert from rings to chains. Phys. Rev. Lett. 109(16), 167802 (2012)

    Article  CAS  PubMed  Google Scholar 

  62. G. Stell, Fluids with long-range forces: toward a simple analytic theory, in Statistical Mechanics. Part A: Equilibrium Techniques, ed. by B.J. Berne (Plenum, New York, 1977)

    Chapter  Google Scholar 

  63. G. Stell, G.N. Patey, J.S. Høye, Dielectric constants of fluid models: statistical mechanical theory and its quantitative implementation. Adv. Chem. Phys. 48, 183–328 (1981)

    CAS  Google Scholar 

  64. J.H. van Vleck, On the role of dipole-dipole coupling in dielectric media. J. Chem. Phys. 5(7), 556–568 (1937)

    Article  Google Scholar 

  65. M.S. Wertheim, Theory of polar fluids: V. Thermodynamics and thermodynamic perturbation theory. Mol. Phys. 37(1), 83–94 (1979)

    Article  CAS  Google Scholar 

  66. A.R. Young-Gonzales, K. Adrjanowicz, M. Paluch, R. Richert, Nonlinear dielectric features of highly polar glass formers: derivatives of propylene carbonate. J. Chem. Phys. 147(22), 224501–224511 (2017)

    Article  CAS  PubMed  Google Scholar 

  67. C. Zhang, G. Galli, Dipolar correlations in liquid water. J. Chem. Phys. 141(8), 084504–084506 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (CHE-1800243). The author is grateful to Ranko Richert for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Matyushov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matyushov, D.V. (2018). Nonlinear Dielectric Response of Polar Liquids. In: Richert, R. (eds) Nonlinear Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-77574-6_1

Download citation

Publish with us

Policies and ethics