Skip to main content

Research Areas

  • Chapter
  • First Online:
The Glaciation of High Asia
  • 466 Accesses

Abstract

The focus of this section is summarized in Fig. 2.1, which depicts a sample of the more exemplary research areas studied by the author since 1973. This sample is presented here in chronological sequence (see above) from the High Glacial maximum glaciation and its proofs via the Late Glacial and Holocene recessional stages to glacier fluctuations from the historical and present periods. In the course of our discussion, we will refer to various findings in the respective localities that over the past four decades have been published in detail.

The characters and symbols in the figures in this chapter can also be viewed in the online version of the figures at http://extras.springer.com/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The claim made by Lehmkuhl et al. (2002) that these boulders are granites weathering in situ, which outcrop only a few meters above the pass road, so that the interpretation provided by Kuhle (e.g. 1987a, 1988c, 1991) becomes disproved (Lehmkuhl et al. 2002: 204), is a mistake. The crystalline compact rock outcropping on the pass (see Fig. 2.81a) is not granite—as considered by Lehmkuhl et al.—but rhyolite (see Fig. 2.81b), whereas the boulders deposited on it consist of granite (see Fig. 2.81c). The unambiguously allochthonous origin of these granite boulders in comparison to the bedrock rhyolite has been determined by mineralogical analysis (microsections and radiography) of the two rock types and published (Heydemann and Kuhle 1988: 615, 617; for radiography see Figs. 3 and 4; Kuhle 1987a: 416–417, Figs. 29 and 30; 1988c: 459, 460; see microsections in Figs. 4 and 5). This has been indicated in Kuhle (1991: 167 and Photo 42). Accordingly, erratics transported long distances are the matter of concern here. In addition, the well-rounded shapes of these meter-sized granite boulders proves the long-distance transport (ibid.). In the meantime, this interpretation has been supported by the geological map of Wu and Xiao (1991). Lehmkuhl et al. (2002: 204) maintain that the granite—which in their opinion outcrops on the pass—also occurs in the map of Wu and Xiao (1991). This is problematic for two reasons: first the Chalamba La (see Fig. 2.81a) is situated at 29° 54′N 90° 10′E and thus ca. 30 km west beyond the section of the geological map compiled by Wu and Xiao. Secondly, the map of Wu and Xiao—as far as it reaches the region of the pass at all—shows a large amount of “volcanic” or “pyroclastic” rocks—as would be the case for rhyolite—but no granite at all.

  2. 2.

    Lehmkuhl et al. (2002) contradict Kuhle’s position and maintain that the Nam Co (lake) basin was free of ice during the last glacial maximum (LGM) and pre-last Ice Age (Mid-Pleistocene/Riss), i.e., since over 132 ka BP (ibid.: Table 4). They date the age of the advance of the small extant hanging valley glacier under discussion, down to about 760 m asl (ibid.: M1a) and thus the ∆ELA of ca. 380 m (see above in the main text), to an age of 32–13 ka BP (Würm, LGM). This is refuted by the 14C-lake dating of 7.2 ka BP. The next-older advance of this small glacier, which reaches the lake only marginally and points to an ELA depression of 410–420 m, is classified by these authors as being older than 132 ka BP and the +30 m stage of the lake level as having an age of 40–32 ka BP (ibid.: Table 4). Both of these assessments have been disproven. According to Kuhle’s glacial chronology for High Asia, both stages (M1a and M2) are younger than 5500 YBP, i.e., they are Neoglacial advances of Stage V. Like other small glaciers they marginally reached the lake basin. Yet, they still were at least 320 m, i.e., 290–280 m of ELA depressions away from its Late Glacial ice cover (see above in the main text).

  3. 3.

    In the meantime, a rather coherent picture has emerged of an early Holocene period of high lake levels that is probable for the entire plateau area (see Mügler et al. 2010: 626, 643). The authors cite as reliable data, obtained from complete profiles, 9.5 ka BP from Pangong Co in West Tibet (Gasse et al. 1996), 6–5.5 ka BP from Sumxi Co (Avouac et al. 1996), and 7.2 ka BP from Nam Co in middle Central Tibet (Mügler et al. 2010) (see also Sect. 2.4.5.1). Other datings have led to incorrect results with ages exaggerated by up to sevenfold, because the hard water effect was not taken into consideration; see e.g. Li and Zhu (2001).

  4. 4.

    Therefore, the statements of Kirchner et al. (2011: 249) as well as Seong et al. (2009: 360) that no plateau glaciation existed in Tibet, because forms typical of Nordic glaciations (drumlin swarms; eskers and ribbed moraines) are lacking, is irrelevant. The reason is that all of these phenomena only come into being under the conditions of a wet-based-glaciation or at the transition from cold-based- to wet-based conditions (see Kleman and Hättestrand 1999).

  5. 5.

    The only older 14C date from the area of the Tibetan Plateau belongs to the lake terrace 70 m above the current lake level of the Pangong (Bangong) Co, and lies at ~39 ka B.P. (Rhodes et al. 1996: 118; Li and Zhu 2001: 39). This dating originates from the “Kunlun-Karakorum Sino-French team” and has not yet been published (Rhodes et al. 1996: 118). The reason for this is that the Bangong (Pangong) Co has a spillway at 4270 m asl, i.e., 24 m above the current lake level, so that the lake level of +70 m requires an artificial damming of the lake. While there are no indications of a geological cause of this damming, a valley-damming ice stream network has been positively proven for the connected Shyok Valley (Kuhle 1988a, 1999, 2001a, 2011a, 2013a). Accordingly, should the date be correct, this glaciation would indirectly have to be dated to the LGP (Stage 0, see Fig. 2.5).

  6. 6.

    Here and all throughout the chapter, the calculation of the ELA depression (ΔELA) is performed as a variation on the Höfer method (1879) that divides the difference in height between extant and past terminal position by the factor two. This method provides good approximate values, as shown by comparison with the THAR (Toe to Headwall Area Ratio; see Meierding 1982) method that also presents a variant of the Höfer method.

  7. 7.

    Schaefer et al. (2008) used the THAR method (Meierding 1982) for their calculation of the ELA depression; see Footnote 6.

  8. 8.

    In this regional context it might be of interest that north of the arid area of the Palung Co , there are light-colored erratic tills lying at 31° 04′ 38″N 83° 38′ 43″E, at between 5050 and ca. 5500 m asl. Adjacent to them, at 31° 05′ 09″N 83° 38′ 44″E, there are also preserved light-colored till covers with light-colored erratic boulders lying at between 5000 and 5160 m asl. These loose rocks lie here everywhere on dark bedrock. These deposits therefore must be classified as belonging to the late Late Glacial Stages II, III, or IV (Fig. 2.5). Here, too, they prove a (still) relief-overriding glaciation.

References

  • Akçar N, Ivy-Ochs S, Schlüchter C (2008) Application of in-situ produced terrestrial cosmogenic nuclides to archaeology: a schematic review. Quat Sci J 57:226–238

    Google Scholar 

  • Ambolt N, Norin E (1982) Reports from the scientific expedition to the North-Western Provinces of China under the Leadership of Dr. Sven Hedin—The Sino-Swedish Expedition. Publication 54 I. Geography 5 Sven Hedin Central Asia Atlas, Memoir on Maps, vol III, Fasc. 1, The Pamirs, K’unlun, Karakoram and Chang T’ang regions, compiled by E. Norin; The Sven Hedin Foundation; Etnografiska Museet, Stockholm, pp 1–61

    Google Scholar 

  • Avouac JP, Dobremez JF, Bourjot L (1996) Paleoclimatic interpretation of a topographic profile across middle Holocene regressive shorelines of Longmu Co (Western Tibet). Palaeogeogr Palaeoclimatol Palaeoecol 120(1–2):93–104

    Article  Google Scholar 

  • Balco G (2011) Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat Sci Rev 30:3–27

    Article  Google Scholar 

  • Bertolotti M (2013) Celestial messengers—cosmic rays: the story of a scientific adventure. Springer, Berlin

    Book  Google Scholar 

  • Blisniuk PM, Sharp WD (2003) Rates of Late Quaternary normal faulting in central Tibet from U-series dating of pedogenic carbonate in displaced fluvial gravel deposits. Earth Planet Sci Lett 215(1–2):169–186. https://doi.org/10.1016/s0012-821x(03)00374-1

    Article  Google Scholar 

  • Briner JP, Miller GH, Davis PT, Finkel RC (2006) Cosmogenic radionuclides from fjord landscapes support differential erosion by overriding ice sheets. Geol Soc Am Bull 118:406–420

    Article  Google Scholar 

  • Burbank J, Fort M (1985) Bedrock control on glacial limits: examples from the Ladakh and Zanskar ranges, North-Western Himalaya, India. J Glaciol 31(108):143–149

    Article  Google Scholar 

  • Cain JC (1987) The earth as a magnet. In: Akasofu S-I, Kamide Y (eds) The solar wind and the earth, Tokyo, pp 55–69

    Chapter  Google Scholar 

  • Campbell WH (2003) Introduction to geomagnetic fields, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Chevalier M-L, Hilley G, Tapponier P, Van Der Woerd J, Liu-Zeng J, Finkel RC, Ryerson J, Li H, Liu X (2011) Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces. Quat Sci Rev 30:528–554

    Article  Google Scholar 

  • Chi J-M, Ren B-H (1980) Glaciers in China. Lanzhou Inst. of Glaciology and Cryopedology, Academia Sinica, Shanghai

    Google Scholar 

  • Dainelli G (1922–1934) Studi sul Glaciale. Risultati Geologici e Geografici, Relazioni scientifiche della Spedizione Italiana De Fillipi nell’ Himalaya, Caracorum e Turchestan Cinese (1913–1914), vol I–III, Ser. II. Zanchelli, Bologna, Italy, pp 1–658 (in Italian)

    Google Scholar 

  • Ding Y (1987) The study of the thermo-hydrological environment of glacial development in the Karakoram N-side, Lanzhou (unpublished)

    Google Scholar 

  • Dortch JM, Owen LA, Caffee MW, Brease P (2009) Late Quaternary glaciations and equilibrium line altitude variations of the McKinley River region, central Alaska Range. Boreas 39:233–246

    Article  Google Scholar 

  • Drew F (1873) Alluvial and Lacustrine Deposits and Glacial Records of the Upper-Indus Basin. Q J Geol Soc 29:441–471. https://doi.org/10.1144/GSL.JGS.1873.029.01-02.39

    Article  Google Scholar 

  • Drew F (1875) The Jummoo and Kashmir territories: a geographical account. E. Stanford, London

    Google Scholar 

  • Dreimanis A, Vagners UJ (1971) Bi-modal distribution of rock and mineral fragments in basal tills. In: Goldthwaite RP (ed) Till, A symposium. Ohio State University Press, Columbus, OH, pp 237–250

    Google Scholar 

  • Dunai TJ (2010) Cosmogenic nuclides—principles, concepts and applications in the earth surface sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Finsterwalder R (1937) Die Gletscher des Nanga Parbat. Glaziologische Arbeiten der Deutschen Himalaya Expedition 1934 und ihre Ergebnisse. Z Gletscherk 25:57–108

    Google Scholar 

  • Fu P, Stroeven AP, Harbor JM, Hättestrand C, Heyman J, Caffee MW, Zhou L (2013) Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau. Quat Sci Rev 64:121–135

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Wiley, London, pp 1–289

    Google Scholar 

  • Gasse F, Arnold M, Fontes JC, Fort M, Gibert E, Huc A, Bingyan Li, Yuanfang Li, Qing Liu, Mélières F, Van Campo E, Fubao Wang, Qingsong Zhang (1991) A 13,000-year climate record from western Tibet. Nature 353:742–745

    Article  Google Scholar 

  • Gasse F, Fontes JC, Van Campo E, Wei K (1996) Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: discussion and conclusions. Palaeogeogr Palaeoclimatol Palaeoecol 120(1–2):79–92

    Article  Google Scholar 

  • Godwin-Austen HH (1868) Notes on the Pangong Lake District of Ladakh, from a journal made during a survey in 1863. J Asiatic Soc Bengal 37, part 2 (Calcutta)

    Article  Google Scholar 

  • Goehring BM, Brook EJ, Linge H, Raisbeck GM, Yiou F (2008) Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quat Sci Rev 27:320–336

    Article  Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Granger DE, Muzikar PF (2001) Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet Sci Lett 188:269–281

    Article  Google Scholar 

  • Groom DE, Mokhov NV, Striganov SI (2001) Muon stopping power and range tables 10 MeV–100 TeV. At Data Nucl Data Tables 76(2)

    Article  Google Scholar 

  • Grosswald MG, Kuhle M, Fastook JL (1994) Würm Glaciation of Lake Issyk-Kul Area, Tian Shan Mts.: a case study in glacial history of Central Asia. GeoJournal 33 (2–3, Tibet and High Asia, Results of the Sino-German and Russian-German Joint Expeditions (III), Ed: Kuhle M):273–310

    Google Scholar 

  • Gu Z, Liu J, Yuan B, Liu T, Liu R, Liu Y, Zhang G (1993) The changes in monsoon influence in the Qinghai-Tibetan Plateau during the past 12,000 years. Geochemical evidence from the L. Selin sediments. Chin Sci Bull 38(1):61–64

    Google Scholar 

  • Gunn JP (1930) Report on the Kumdan Dam and Shyok Flood of 1929. Government of Punjab Publication, Lahore

    Google Scholar 

  • Hartmann GA, Pacca IG (2009) Time evolution of the South Atlantic Magnetic Anomaly. Anais Acad Bras Ciênc 81(2):243–255 (Annals of the Brazilian Academy of Sciences). ISSN 0001-3765 www.scielo.br/aabc

    Article  Google Scholar 

  • Heimsath AM (2006) Eroding the land: steady-state and stochastic rates and processes through a cosmogenic lens. In: Siame LL, Bourlès DL, Brown ET (eds) In situ-produced cosmogenic nuclides and quantification of geological processes. Geological Society of America Special paper 415, pp 111–129

    Chapter  Google Scholar 

  • Hättestrand C, Stroeven AP (2002) A relict landscape in the centre of Fennoscandian glaciation: geomorphological evidence of minimal Quaternary glacial erosion. Geomorphology 44:127–143

    Article  Google Scholar 

  • Herzschuh U, Zhang C, Mischke S, Herzschuh R, Mohammadi F, Mingram B, Kürschner H, Riedel F (2005) A late Quaternary lake record from the Qilian Mountains (NW China): evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data. Global Planet Change 46:361–379

    Article  Google Scholar 

  • Herzschuh U, Winter K, Wünnemann B, Li S (2006) A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int 154(155):113–121

    Article  Google Scholar 

  • Herzschuh U, Kramer A, Mischke S, Zhang C (2009) Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quat Res 71:162–171

    Article  Google Scholar 

  • Heyman J, Stroeven AP, Caffee MW, Hättestrand C, Harbor J, Li Y, Alexanderson H, Zhou L, Hubbard A (2010) Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: the case of a missing LGM expansion. In: Heyman J (ed) Palaeoglaciology of the Northeastern Tibetan Plateau. PhD thesis, Stockholm University

    Google Scholar 

  • Heyman J, Stroeven AP, Harbor JM, Caffee MW (2011) Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth Planet Sci Lett 302:71–80

    Article  Google Scholar 

  • Heydemann A, Kuhle M (1988) The petrography of southern Tibet–results of microscopic and X-ray analyses of rock samples from the 1984 expedition area (Transhimalaya to Mt. Everest N Slope). GeoJournal 17(4). In: Kuhle M, Wang W (eds) Tibet and High Asia. Results of the Sino-German Joint Expeditions (I), pp 615–625

    Google Scholar 

  • Höfer HV (1879) Gletscher- und Eiszeitstudien. Sitzungsbericht der Akademie der Wissenschaften. Mathematisch-physikalische Klasse I. 79:331–367

    Google Scholar 

  • Hövermann J, Süssenberger H (1986) Zur Klimageschichte Hoch- und Ostasiens. Berl Geogr Studien 20:173–186

    Google Scholar 

  • Huntington E (1905) The mountains of Turkestan. Geogr J 25

    Google Scholar 

  • Ivy-Ochs S, Kober F (2008) Surface exposure dating with cosmogenic nuclides. Quat Sci J 57:179–209

    Google Scholar 

  • Kaufmann G, Lambeck K (1997) Implications of Late Pleistocene Glaciation of the Tibetan Plateau for present-day uplift rates and gravity anomalies. Quat Res 48:267–279

    Article  Google Scholar 

  • Kirchner N, Greve R, Stroeven AP, Heyman J (2011) Paleoglaciological reconstructions for the Tibetan Plateau during the last glacial cycle: evaluating numerical ice sheet simulations driven by GCM-ensembles. Quat Sci Rev 30:248–267

    Article  Google Scholar 

  • Klein J, Gosse J (1996) Terrestrial factors that influence production rates. Radiocarbon 38(1):161–162

    Google Scholar 

  • Kleman J (1994) Preservation of landforms under ice sheets and ice caps. Geomorphology 9:19–32

    Article  Google Scholar 

  • Kleman J, Hättestrand C (1999) Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. Nature 402:63–66

    Article  Google Scholar 

  • Kong P, Na C, Brown R, Fabel D, Freeman S, Xiao W, Wang Y (2011) Cosmogenic 10Be and 26Al dating of paleolake shorelines in Tibet. J Asian Earth Sci 41:263–273

    Article  Google Scholar 

  • Kramer A, Herzschuh U, Mischke S, Zhang C (2010) Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from Lake Naleng pollen profile. Quat Res 73:324–335

    Article  Google Scholar 

  • Kuhle M (1974) Vorläufige Ausführungen morphologischer Feldarbeitsergebnisse aus den SE-Iranischen Hochgebirgen am Beispiel des Kuh-i-Jupar. Z Geomorphol N.F. 18(4):472–483

    Google Scholar 

  • Kuhle M (1976) Beiträge zur Quartärgeomorphologie SE-Iranischer Hochgebirge. Die quartäre Vergletscherung des Kuh-i-Jupar. Göttinger Geogr Abh 67 I:1–209; II:1–105

    Google Scholar 

  • Kuhle M (1980) Klimageomorphologische Untersuchungen i. d. Dhaulagiri- u. Annapurna-Gruppe (Zentraler Himalaya). Tagungsber. u. wiss. Abh. 42. Deutsch Geographentages 1979:244–247

    Google Scholar 

  • Kuhle M (1982a) Der Dhaulagiri- und Annapurna-Himalaya. Z Geomorphol 41, Vol. I, Vol. II, Abb. 1–184, Stuttgart, 1–229

    Google Scholar 

  • Kuhle M (1982b) Erste Deutsch-Chinesische Gemeinschaftsexped. nach Tibet und in die Massive des Kuen-Lun-Gebirges (1981). Ein Expeditions- u. vorl. Forschungsber. In: Hagedorn H, Giessner K (eds) Tagungsber. und wiss. Abhandlungen des 43. Deutschen Geographentages. Steiner, Wiesbaden, Mannheim, pp 63–82

    Google Scholar 

  • Kuhle M (1982c) Was spricht für eine pleistozäne Inlandvereisung Hochtibets? Sitzber. Braunschweig. Wiss. Ges., Sonderh., 6, Göttingen, pp 68–77

    Google Scholar 

  • Kuhle M (1982d) Periglazial- und Glazialformen und -prozesse in NE-Tibet. Sitzungsberichte und Mitteilungen der Braunschweigischen Wissenschaftlichen Gesellschaft, Sonderheft 6 (Die Chinesisch/Deutsche Tibet-Expedition 1981, Braunschweig-Symposium vom 14.-16.04.1982), pp 19–24

    Google Scholar 

  • Kuhle M (1983) Der Dhaulagiri- und Annapurna-Himalaya. Empirische Grundlage. Z Geomorphol Suppl. Bd. 41:1–383

    Google Scholar 

  • Kuhle M (1985a) Ein subtropisches Inlandeis als Eiszeitauslöser. Südtibet- u. Mt. Everest-Expedition 1984. Georgia Augusta, pp 35–51

    Google Scholar 

  • Kuhle M (1985b) Permafrost and periglacial indicators on the Tibetan Plateau from the Himalaya Mountains in the south to the Quilian Shan in the north (28–40°N). Z Geomorphol N.F. 29(Bd. 2):183–192

    Google Scholar 

  • Kuhle M (1985c) Glaciation research in the Himalayas: a new Ice Age theory. Universitas 27(4):281–294

    Google Scholar 

  • Kuhle M (1986a) Former glacial stades in the mountain areas surrounding Tibet—in the Himalayas (27°–29°N: Dhaulagiri, Annapurna, Cho Oyu and Gyachung Kang areas) in the south and in the Kuen Lun and Quilian Shan (34°–38°N: Animachin, Kakitu) in the north. In: Joshi SC (ed) Nepal, Himalaya. Geo-ecological perspectives. HR Publishers, Kay Kay Printers, New Delhi, pp 437–473

    Google Scholar 

  • Kuhle M (1986b) Südtibet- und Mt. Everest-Expedition 1984- oder: Ein subtropisches Inlandeis als Eiszeitauslöser? Universitas, 41, 1(476):64–78

    Google Scholar 

  • Kuhle M (1986c) Schneegrenzberechnung und typologische Klassifikation von Gletschern anhand spezifischer Reliefparameter. Petermanns Geogr Mitt 130:41–51

    Google Scholar 

  • Kuhle M (1986d) Die Vergletscherung Tibets und die Entstehung von Eiszeiten. Spektrum Wiss 9:42–54

    Google Scholar 

  • Kuhle M (1987a) Subtropical mountain- and highland-glaciation as ice age triggers and the waning of the glacial periods in the Pleistocene. GeoJournal 14(4):393–421

    Article  Google Scholar 

  • Kuhle M (1987b) Absolute Datierungen zur jüngeren Gletschergeschichte im Mt. Everest-Gebiet u. die mathem. Korrektur von Schneegrenzberechnungen. Stuttg., Tagungsber. 45., Dt. Geographentag, Berlin 1985, pp 200–208

    Google Scholar 

  • Kuhle M (1987c) Glacial, nival and periglacial environments in northeastern Qinghai-Xizang-Plateau. In: Hövermann J, Wang Wenjing J (eds) Reports on the North-Eastern part of the Quinghai-Xizang (Tibet) Plateau by the Sino-German Scientific Expedition 1981. Science Press, Beijing, pp 176–244

    Google Scholar 

  • Kuhle M (1987d) The problem of a Pleistocene inland glaciation of the north-eastern Qinghai-Xizang-Plateau (Tibet). In: Hövermann J, Wang Wenjing J (eds) Reports on the North-Eastern Part of the Quinghai-Xizang (Tibet) Plateau by the Sino-German Scientific Expedition 1981. Science Press, Beijing, pp 250–315

    Google Scholar 

  • Kuhle M (1988a) Topography as a fundamental element of glacial systems. A new approach to ELA-calculation and typological classification of paleo- and recent Glaciations. In: Kuhle M, Wang Wenjing J (eds) Tibet and High Asia. Results of the Sino-German Joint Expeditions (I). GeoJournal 17(4):545–568

    Google Scholar 

  • Kuhle M (1988b) Die eiszeitliche Vergletscherung W-Tibets zwischen Karakorum und Tarim-Becken und ihr Einfluß auf die globale Energiebilanz. Geogr Z 76(3):135–148

    Google Scholar 

  • Kuhle M (1988c) Geomorphological findings on the build-up of Pleistocene glaciation in southern Tibet and on the problem of inland ice. Results of the Shisha Pangma and Mt. Everest Expedition 1984. In: Kuhle M, Wang Wenjing J (eds) Tibet and High Asia. Results of the Sino-German Joint Expeditions (I). GeoJournal 17(4):457–511

    Google Scholar 

  • Kuhle M (1988d) The Pleistocene Glaciation of Tibet and the onset of ice ages- an autocycle hypothesis. In: Kuhle M, Wang Wenjing J (eds) Tibet and High Asia. Results of the Sino-German Joint Expeditions (I). GeoJournal 17(4):581–596

    Google Scholar 

  • Kuhle M (1988e) Subtropical mountain- and highland-glaciation as Ice Age triggers and the waning of the glacial periods in the Pleistocene. Chin Transl Bull Glaciol Geocryol 5(4):1–17 (in Chinese language)

    Google Scholar 

  • Kuhle M (1988f) The Pleistocene glaciation of Tibet and the onset of ice ages—an autocyclic hypothesis. In: International Congress “The Neogene of Karakoram and Himalayas.” March 1988, Leicester, UK; Abstract, 11

    Google Scholar 

  • Kuhle M (1988g) Letzteiszeitliche Gletscherausdehnung vom NW-Karakorum bis zum Nanga Parbat (Hunza-Gilgit- und Indusgletschersystem). Tagungsber. Wiss. Abh., 46., Dt. Geographentag München 1987, AK- Sitzung “Neueste physisch-geographische Forschungsergebnisse aus Hochtibet und angrenzenden Gebieten,” Steiner, Stuttgart, pp 606–607

    Google Scholar 

  • Kuhle M (1989) Die Inlandvereisung Tibets als Basis einer in der Globalstrahlungsgeometrie fußenden, reliefspezifischen Eiszeittheorie. Petermanns Geogr Mitt 133(4):265–285

    Google Scholar 

  • Kuhle M (1990a) New data on the Pleistocene glacial cover of the southern border of Tibet: the glaciation of the Kangchendzönga Massif (8585 m, E-Himalaya). GeoJournal 20(4):415–421

    Article  Google Scholar 

  • Kuhle M (1990b) The cold deserts of High Asia (Tibet and contiguous mountains). GeoJournal 20(3):319–323

    Article  Google Scholar 

  • Kuhle M (1991) Observations supporting the Pleistocene inland glaciation of High Asia. In: Kuhle M, Xu D (eds) Tibet and High Asia. Results of the Sino-German Joint Expeditions (II). GeoJournal 25(2–3):133–231

    Article  Google Scholar 

  • Kuhle M (1993) Eine Autozyklentheorie zur Entstehung und Abfolge der quartären Kalt- und Warmzeiten auf der Grundlage epirogener und glazialisostatischer Bewegungsinterferenzen im Bereich des tibetischen Hochlandes. Peterm Geogr Mittlg 137(3):133–152

    Google Scholar 

  • Kuhle M (1994a) Present and Pleistocene glaciation on the north-western margin of Tibet between the Karakorum Main Ridge and the Tarim Basin supporting the evidence of a Pleistocene inland glaciation in Tibet. In: Kuhle M (ed) Tibet and High Asia. Results of the Sino-German and Russian-German Joint Expeditions (III). GeoJournal 33(2–3):133–272 (Kluwer, Dordrecht)

    Article  Google Scholar 

  • Kuhle M (1994b) New findings on the ice-cover between Issyk-Kul and K2 (Tian Shan, Karakorum) during the Last Glaciation. In: Zheng D, Zhang Q, Pan Y (eds) Proceedings of the international symposium on the Karakorum and Kunlun Mountains (ISKKM), Kashi, China, June 1992. China Meteorological Press, Beijing, pp 185–197

    Google Scholar 

  • Kuhle M (1995) Glacial isostatic uplift of Tibet as a consequence of a former ice sheet. GeoJournal 37(4):431–449

    Article  Google Scholar 

  • Kuhle M (1996a) Die Entstehung von Eiszeiten als Folge der Hebung eines subtropischen Hochlandes über die Schneegrenze – dargestellt am Beispiel Tibets. Der Aufschluss 47(4):145–164

    Google Scholar 

  • Kuhle M (1996b) Neue Ergebnisse zur Eiszeitforschung Hochasiens in Zusammenschau mit den Untersuchungen der letzten zwanzig Jahre. Berl Geogr Abh., Beiheft Nr.4/96, Berlin

    Google Scholar 

  • Kuhle M (1996c) Rekonstruktion der maximalen eiszeitlichen Gletscherbedeckung im Nanga Parbat Massiv (35° 05′–40°N/74° 20′–75°E). In: Kick W (ed) Beiträge und Materialien zur Regionalen Geographie, 8, Forschung am Nanga Parbat. Geschichte und Ergebnisse. Geographisches Institut der T.U. Berlin, pp 135–156

    Google Scholar 

  • Kuhle M (1997) New findings concerning the Ice Age (LGM) glacier cover of the East Pamir, of the Nanga Parbat up to the Central Himalaya and of Tibet, as well as the Age of the Tibetan Inland Ice. In: Kuhle M (ed) Tibet and High Asia (IV). Results of investigations into high mountain geomorphology. Paleo-glaciology and climatology of the pleistocene. GeoJournal 42(2–3):87–257

    Google Scholar 

  • Kuhle M (1998a) Reconstruction of the 2.4 million km2 Late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate. Quat Int 45/46:71–108 (additional Figures in: 47/48, 173–182)

    Article  Google Scholar 

  • Kuhle M (1998b) New findings on the inland glaciation of Tibet from South and Central West Tibet with evidences for its importance as an Ice Age trigger. In: Tandon OP (ed) Himalayan geology. The role of the Tibetan Plateau in forcing global climatic changes, vol 19(2), pp 3–22

    Google Scholar 

  • Kuhle M (1998c) The Ice Age glaciation of East-Pamir (36° 40′ -39◦10′N/74° 40′ -76° 10′E). In: Stellrecht I (ed) Karakorum – Hindukush – Himalaya: dynamics of change. Culture Area Karakorum, Scientific Studies, 4/1, Köln, Rüdiger Köppe Verlag, pp 29–47

    Google Scholar 

  • Kuhle M (1998d) Neue Ergebnisse zur Eiszeitforschung Hochasiens in Zusammenschau mit den Untersuchungen der letzten zwanzig Jahre. Petermanns Geogr Mitt 142(3–4):219–226

    Google Scholar 

  • Kuhle M (1999) Reconstruction of an approximately complete Quaternary Tibetan inland glaciation between the Mt. Everest- and Cho Oyu massifs and the Aksai Chin. A new glaciogeomorphological SE-NW diagonal profile through Tibet and its consequences for the glacial isostasy and Ice Age cycle. In: Kuhle M (ed) Tibet and High Asia (V). GeoJournal 47(1–2):3–276

    Google Scholar 

  • Kuhle M (2001a) The maximum Ice Age (LGM) glaciation of the Central- and South Karakorum: an investigation of the heights of its glacier levels and ice thickness as well as lowest prehistoric ice margin positions in the Hindukush, Himalaya and in East-Tibet on the Minya Konka-massif. In: Kuhle M (ed) Tibet and High Asia (VI): glaciogeomorphology and prehistoric glaciation in the Karakorum and Himalaya. GeoJournal 54(1–4) and 55(1):109–396

    Google Scholar 

  • Kuhle M (2001b) The Tibetan ice sheet; its impact on the palaeomonsoon and relation to the earth’s oribital variations. Polarforschung 71(1–2):1–13

    Google Scholar 

  • Kuhle M (2001c) Reconstruction of outlet glacier tongues of the Ice Age South-Tibetan ice cover between Cho Oyu and Shisha Pangma as a further proof of the Tibetan inland ice sheet. Polarforschung 71(3):79–95

    Google Scholar 

  • Kuhle M (2002a) A relief-specific model of the Ice Age on the basis of uplift-controlled glacier areas in Tibet and the corresponding albedo increase as well as their positive climatological feedback by means of the global radiation geometry. Climate Res 20:1–7

    Article  Google Scholar 

  • Kuhle M (2002b) Outlet glaciers of the Pleistocene (LGM) south Tibetian ice sheet between Cho Oyu and Shisha Pangma as potenial sources of former mega-floods. In: Martini P, Baker VR, Garzón G (eds) Flood and megaflood processes and deposits: recent and ancient examples. Special Publication of the International Association of Sedimentologists (IAS), vol 32. Blackwell Scientific, Oxford, pp 291–302

    Google Scholar 

  • Kuhle M (2003) New geomorphological indicators of a former Tibetan ice sheet in the central and northeastern part of the high plateau. Z Geomorphol N.F. 130(Suppl):75–97

    Google Scholar 

  • Kuhle M (2004) The High Glacial (Last Ice Age and LGM) glacier cover in High- and Central Asia. Accompanying text to the mapwork in hand with detailed references to the literature of the underlying empirical investigations. In: Ehlers J, Gibbard PL (eds) Extent and chronology of glaciations, vol 3 (Latin America, Asia, Africa, Australia, Antarctica). Elsevier B.V., Amsterdam, pp 175–199

    Google Scholar 

  • Kuhle M (2005a) The maximum Ice Age (Würmian, Last Ice Age, LGM) glaciation of the Himalaya—a glaciogeomorphological investigation of glacier trim-lines, ice thicknesses and lowest former ice margin positions in the Mt. Everest-Makalu-Cho Oyu massifs (Khumbu- and Khumbakarna Himal) including informations on late-glacial-, neoglacial-, and historical glacier stages, their snow-line depressions and ages. In: Kuhle M (ed) Tibet and High Asia (VII): glaciogeomorphology and former glaciation in the Himalaya and Karakorum. GeoJournal 62(3–4):193–650

    Article  Google Scholar 

  • Kuhle M (2005b) The maximum Ice Age glaciation between Karakoram Main Ridge (K2) and the Tarim Basin and its influence on the global energy balance. J Mt Sci 2(1):5–22

    Article  Google Scholar 

  • Kuhle M (2005c) Glacial geomorphology and ice ages in Tibet and surrounding mountains. Island Arc 14(4):346–367

    Article  Google Scholar 

  • Kuhle M (2006a) The past Hunza Glacier in connection with a Pleistocene Karakorum ice stream network during the Last Ice Age (Würm). In: Kreutzmann H, Saijid A (eds) Karakoram in transition. Oxford University Press, Karachi, pp 24–48

    Google Scholar 

  • Kuhle M (2006b) The reconstruction of Ice Age glaciation of the Himalaya and High Asia by Quaternary geological and glaciogeomorphological methods. In: Saklani P (ed) Himalaya, geological aspects, vol 4, pp 181–214

    Google Scholar 

  • Kuhle M (2007a) The past ice stream network in the Himalayas and the Tibetan ice sheet during the Last Glacial Period and its glacial-isostatic, eustatic and climatic consequences. Tectonophysics 445(1–2):116–144

    Article  Google Scholar 

  • Kuhle M (2007b) The Pleistocene glaciation (LGP and pre-LGP, pre-LGM) of SE-Iranian Mountains exemplified by the Kuh-i-Jupar, Kuh-i-Lalezar and Kuh-i-Hezar Massifs in the Zagros. Polarforschung 77(2–3):71–88 (Erratum/Clarification concerning Figure 15, Vol. 78, (1–2), 2008, 83)

    Google Scholar 

  • Kuhle M (2009) The former glaciation of High-(Tibet) and Central Asia and its global climatic impact—an Ice Age theory with a remark on potential warmer climatic cycles in the future. In: Krugger, Max I., Stern, Harry P (eds) New Permafrost and Glacier Research. Nova Science Publishers Inc., Hauppauge, NY, pp 163–235

    Google Scholar 

  • Kuhle M (2010) New indicators of a former Tibetan ice sheet and an ice stream network in the surrounding mountain systems: new field observations and datings on the SE-, S- and W-margin of Tibet from the expeditions 2004–2009. In: Leech ML, Klemperer SL, Mooney WD (eds) Online proceedings for the 24th Himalaya-Karakoram-Tibet workshop. U.S. Geological Survey, Open-File Report 2010-1099

    Google Scholar 

  • Kuhle M (2011a) The High Glacial (Last Ice Age and Last Glacial Maximum) Ice Cover of High and Central Asia, with a critical review of some recent OSL and TCN Dates. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciation—extent and chronology, a closer look. Elsevier B.V, Amsterdam, pp 943–965 (glacier maps downloadable at: http://booksite.elsevier.com/9780444534477/)

    Google Scholar 

  • Kuhle M (2011b) The High Glacial (LGP, LGM, MIS 3-2) southern outlet glaciers of the Tibetan inland ice through Mustang into the Thak Khola as further evidence of the Tibetan ice. J Nepal Geol Soc (JNGS) 43 (special issue):175–200

    Google Scholar 

  • Kuhle M (2011c) Ice Age development theory. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer, Dordrecht, pp 576–581

    Google Scholar 

  • Kuhle M (2012a) The former Tibetan ice sheet. In: Müller J, Koch L (eds) Ice sheets: dynamics, formation and environmental concerns. Nova Science Publishers Inc., Hauppauge, NY, pp 173–203

    Google Scholar 

  • Kuhle M (2012b) The Early and Late Glacial high mountain glaciation surrounding Tibet as topographic-climatic cause of high-energetic glacial lake outburst floods (GLOFs) and their sedimentological consequences in the lower mountain forelands. In: Veress B, Szigethy J (eds) Horizons in earth science research, vol 7. Nova Science Publishers Inc. Hauppauge, NY, pp 197–227

    Google Scholar 

  • Kuhle M (2012c) High-glacial (LGP, LGM, MIS 3-2) ice cover in the middle Marsyandi Nadi and the Damodar-Himal down to the junction of the Nar Khola and the Marsyandi Khola (N of Annapurna Himalaya). In: Hartmann M, Weipert J (eds) Biodiversity and Natural Heritage of the Himalaya, vol IV (Biodiversität und Naturausstattung im Himalaya), Erfurt, pp 9–46

    Google Scholar 

  • Kuhle M (2013a) The Uplift of High Asia above the snowline and its glaciation as an Albedo-Dependent cause of the Quaternary Ice Ages. Nova Science Publishers Inc., Hauppauge, NY, pp 1–240

    Google Scholar 

  • Kuhle M (2013b) The Glacial (LGP, MIS 3-2) Mustang-Thak Khola outlet glacier of the Tibetan ice sheet and the Marsyandi Khola-ice stream network between Damodar- and Manaslu Himalaya (with Nar-, Dudh-, Dana-, Myardi- and Nadi Khola tributary glaciers). Geography International, vol 3 (Tibet and High Asia (VIII) Glaciogeomorphology and Former Glaciation in the Himalaya and Karakoram) Dedicated to Wolf Tietze. Shaker Verlag, Aachen, pp 1–308

    Google Scholar 

  • Kuhle M (2014a) Zone of optimum development of patterned grounds as a characteristic of semi-arid areas, an indicator of permafrost-lines and a reference to sub-glacial permafrost below the past arid cold-based Tibetan ice sheet. In: Pokrovsky OS (ed) Permafrost: distribution, composition and impacts on infrastructure and ecosystems. Nova Science Publishers Inc., Hauppauge, NY, pp 107–152

    Google Scholar 

  • Kuhle M (2014b) The Glacial (MIS 3-2) outlet glacier of the Marsyandi Nadi-icestream-network with its Ngadi Khola Tributary Glacier (Manaslu- and Lamjung Himalaya). The reconstructed lowering of the Marsyandi Nadi ice stream tongue down into the Southern Himalaya foreland. J Mt Sci 11(1):236–287

    Article  Google Scholar 

  • Kuhle M (2014c) Climate or topography—topography of mountains as basis of modern glacier variations, exemplified by 6500 up to 8000 m high summits in High Asia. Evidences of Holocene and Historical as well as current glacier stages. In: Goncalves AJB, Vieira, AAB (eds) Mountains: geology, topography and environmental concerns. Nova Science Publishers Inc., Hauppauge, NY, pp 65–147

    Google Scholar 

  • Kuhle M, Jacobsen JP (1988) On the geoecology of southern Tibet – measurements of climate parameters including surface- and soil-temperatures in debris, rock, snow, firn and ice during the South Tibet- and Mt. Everest Expedition in 1984. In: Kuhle M, Wang W (eds) Tibet and High-Asia. Results of the Sino-German Joint Expeditions (I). GeoJournal 17(4):597–615

    Google Scholar 

  • Kuhle M, Kuhle S (1997) Der quartäre Klimawandel – System oder geschichtliches Ereignis? Überlegungen zur geographischen Methode am Beispiel von Eiszeittheorien. Erdkunde 51:114–130

    Article  Google Scholar 

  • Kuhle M, Kuhle S (2010) Review on dating methods: numerical dating in the Quaternary of High Asia. J Mt Sci 7:105–122

    Article  Google Scholar 

  • Kuhle M, Herterich K, Calov R (1989) On the Ice Age glaciation of the Tibetan highlands and its transformation into a 3-D model. GeoJournal 19(2):201–206

    Article  Google Scholar 

  • Kuhle M, Grosswald MG, Dyurgerov MB (1997) Quaternary glaciation in north-western High-Asia. Data of Glaciological Studies, 81. In: Proceedings of the international symposium “Seasonal and Longterm Fluctuations of Nival and Glacial Processes in Mountains,” Tashkent symposium (12-19.09.1993), pp 70–79

    Google Scholar 

  • Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439

    Article  Google Scholar 

  • Lehmkuhl F, Owen LA (2005) Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34:87–100

    Article  Google Scholar 

  • Lehmkuhl F, Klinge M, Lang A (2002) Late Quaternary glacier advances, lake level fluctuations and aeolian sedimentation in Southern Tibet. Z Geomorphol N.F. Suppl. Bd. 126:183–218

    Google Scholar 

  • Li B, Zhu L (2001) “Greatest lake period” and its palaeo-environment on the Tibetan Plateau. J Geog Sci 11(1):34–42

    Article  Google Scholar 

  • Li B, Li J, Cui Z (eds) (1991) Quaternary glacial distribution map of Qinghai-Xixang (Tibet) Plateau 1:3,000,000. Scientific advisor: Shi Yafeng, Quaternary Glacier and Environment Research Center, Lanzhou University

    Google Scholar 

  • Li G, Webb GM, Le Roux JA, Zank GP, Wiedenbeck ME (2008) Time-dependent solar modulation of GCRs using a Monte Carlo simulation. In: Pogorelov NV, Audit E, Zank GP (eds) Numerical modelling of space plasma flows/ASTRONUM-2007. ASP conference series, vol 385, pp 31–37

    Google Scholar 

  • Linge H, Brook EJ, Nesje A, Raisbeck GM, Yiou F, Clark H (2006) In situ 10 Be exposure ages from southeastern Norway: implications for the geometry of the Weichselian Scandinavian ice sheet. Quat Sci Rev 25:1097–1109

    Article  Google Scholar 

  • Longstaff TG (1910) Glacier exploration in the eastern Karakoram. Geogr J 35 (London)

    Article  Google Scholar 

  • Lühr H (2013) Das Erdmagnetfeld wird schwächer – Wie gefährlich ist das für uns? In: Olbrich A (ed) Bayerisches Fernsehen: Faszination Wissen. 15.07.2013

    Google Scholar 

  • Lynch P (2011) and (2012) Magnetic pole reversal happens all the (geologic) time. http://www.nasa.gov/topics/earth/features/2012-poleReversal.html. Last accessed on 02.08.2013

  • Madsen DB, Haizhou M, Rhode D, Brantingham PJ, Forman SL (2008) Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quat Res 69:316–325

    Article  Google Scholar 

  • Masarik J, Reedy RC (1995) Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth Planet Sci Lett 136:381–395

    Article  Google Scholar 

  • Masarik J, Beer J (2009) An updated simulation of particle fluxes and cosmogenic nuclide production in the earth’s atmosphere. J Geophys Res 114:D 11103

    Article  Google Scholar 

  • Masarik J, Frank M, Schäfer JM, Wieler R (2001) Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensitiy variations during the past 800,000 years. Geochim Cosmochim Acta 65(17):2995–3003

    Article  Google Scholar 

  • Mason K, Gunn JP, Todd HJ (1930) The Shyok flood in 1929. Himalayan J 2:35–47

    Google Scholar 

  • Meierding TC (1982) Late Pleistocene glacial equilibrium-line altitudes in the Colorado Front Range: a comparison of methods. Quat Res 18:289–310

    Article  Google Scholar 

  • Merchel S, Benedetti L, Bourlès DL, Braucher RA, Dewald T, Faestsermann R, Finkel RC, Korschinek G, Masarik J, Poutivtsey M, Rochette P, Rugel G, Zell KO (2010) A multi-radionuclide approach for in situ produced terrestrial cosmogenic nuclides: 10Be, 26Al, 41Ca from carbonate rocks. Nucl Instrum Methods Phys Res B 268:1179–1184

    Article  Google Scholar 

  • Morinaga H, Itota C, Isezaki N, Goto H, Yaskawa K, Kusakabe M, Liu J, Gu Z, Yuan B, Cong S (1993) Oxygen-18 and carbon-13 records for the last 14,000 years from lacustrine carbonates of Siling-Co (lake) in the Qinghai-Tibetan Plateau. Geophys Res Lett 20(24):2909–2912

    Article  Google Scholar 

  • Mügler I, Gleixner G, Günther F, Mäusbacher R, Daut G, Schütt B, Berking J, Schwalb A, Schwark L, Xu B, Yao T, Zhu T, Yi C (2010) A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet. J Paleolimnol 43:625–648

    Article  Google Scholar 

  • Nesje A, Dahl SO (2000) Glaciers and environmental change. Arnold, London, pp 1–203

    Google Scholar 

  • Neve A (1913) Thirty years in Kashmir. London

    Google Scholar 

  • Nishiizumi K, Kohl CP, Arnold JR, Dorn R, Klein J, Fink D, Middleton R, Lal D (1993) Role of in situ cosmogenic nuclides 10Be and 26Al in the study of diverse geomorphic processes. Earth Process Landforms 18:407–425

    Article  Google Scholar 

  • Norin E (1932) Quaternary climatic changes within the Tarim Basin. Geogr Rev 22:591–598

    Article  Google Scholar 

  • Opitz S, Wünnemann B, Aichner B, Dietze E, Hartmann K, Herzschuh U, Ijmker J, Lehmkuhl F, Mischke S, Plotzki A, Stauch G, Diekmann B (2012) Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 337–338:159–176

    Article  Google Scholar 

  • Owen LA (2009) Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quat Sci Rev 28:2150–2164

    Article  Google Scholar 

  • Owen LA, Finkel RC, Barnard PL, Haizhou M, Asahi K, Caffee MW, Derbyshire E (2005) Climatic and topographic controls on the style and timing of Late Quaternary glaciations throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide exposure dating. Quat Sci Rev 24:1391–1411

    Article  Google Scholar 

  • Owen LA, Caffee MW, Finkel RC, Seong Yeong Bae (2008) Quaternary glaciation of the Himalayan-Tibetan orogen. J Quat Sci 23:513–531

    Article  Google Scholar 

  • Owen LA, Robinson R, Benn DI, Finkel RC, Davis NK, Yi C, Putkonen J, Li D, Murray AS (2009) Quaternary glaciation of Mount Everest. Quat Sci Rev 28:1412–1433

    Article  Google Scholar 

  • Owen LA, Yi C, Finkel RC, Davis NK (2010) Quaternary glaciation of Gurla Mandhata (Naimon’anyi). Quat Sci Rev 29:1817–1830

    Article  Google Scholar 

  • Owen LA, Chen J, Hedrick KA, Caffee MW, Robinson AC, Schoenbohm LM, Yuan Z, Li W, Imrecke DB, Liu J (2012) Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir. Quat Sci Rev 47:56–72

    Article  Google Scholar 

  • Pillewitzer W (1958) Neue Erkenntnisse über die Blockbewegung der Gletscher. IAHS AISH Publication 46, 429–436

    Google Scholar 

  • Purdue University (2008) Cosmic-ray produced nuclide systematics on earth project. http://www.physics.purdue.edu/primelab/CronusProject/cronus, date 22-07-2013

  • Putkonen J, Swanson T (2003) Accuracy of cosmogenic ages for moraines. Quatern Res 59(2):255–261

    Article  Google Scholar 

  • Rhodes TE, Gasse F, Riufen L, Fontes J-C, Keqin W, Bertrand P, Gibert E, Mélières F, Tucholka P, Zhixiang W, Zhi-Yuan C (1996) A Late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeogr Palaeoclimatol Palaeoecol 120:105–121

    Article  Google Scholar 

  • Schäfer JM, Tschudi S, Zhao Z, Wu X, Ivy-Ochs S, Wieler R, Baur H, Kubik PW, Schlüchter C (2002) The limited influence of glaciations in Tibet on global climate over the past 170 000 yr. Earth Planet Sci Lett 194:287–297

    Article  Google Scholar 

  • Schaefer JM, Oberholzer P, Zhao Z, Ivy-Ochs S, Wieler R, Baur H, Kubik PW, Schlüchter C (2008) Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas. Quat Sci Rev 27:295–311

    Article  Google Scholar 

  • Schroeder-Lanz H (1986) Beobachtungen zur rezenten und eiszeitlichen Vergletscherung am Kongurshan/Pamir, Himmelssee/Tienshan und Koko Nor-Nanshan Qaidam. In: Kuhle M (ed) Göttinger Geogr. Abh., 81, Internat. Sympos. über Tibet und Hochasien, Oct. 1985, Göttingen, pp 39–58

    Google Scholar 

  • Schröder N (2007) The discrepancy between the method of cosmogenic nuclide exposure dating on moraines and morphodynamics, weathering, glacier dynamics, erosion and global climate. Abs Quat Int 167–168:369

    Google Scholar 

  • Seidler C (2011) http://www.spiegel.de/wissenschaft/weltall/riesige-sonneneruption-kosmischer-streifschuss-fuer-mutter-erde-a-767415.html

  • Seidler C (2014) http://www.spiegel.de/wissenschaft/weltall/swarm-esa-satelliten-messen-magnetfeld-der-erde-a-976116.html

  • Seguin J (2013) Anwendbarkeit und Grenzen der Voraussetzungen kosmogener Nukliddatierungen – Analyse anhand von Literaturauswertung. Unveröffentlichte Bachelor of Arts-Arbeit; Department GHG of the Geographical Institute, University of Göttingen, 1–59

    Google Scholar 

  • Seong YB, Owen LA, Yi C, Finkel RC (2009) Quaternary glaciations of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol Soc Am Bull 121(3–4):348–365

    Article  Google Scholar 

  • Shi Y, Zheng B, Li S (1992) Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: a controversy to M. Kuhle’s ice sheet hypothesis. Z Geomorph N. F., Suppl. Bd. 84, Berlin, Stuttgart, 19–35

    Article  Google Scholar 

  • Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23753–23759

    Article  Google Scholar 

  • Stroeven AP, Fabel D, Hättestrand C, Harbor J (2002) A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology 44:145–154

    Article  Google Scholar 

  • Thomson T (1852) Western Himalaya and Tibet. London

    Google Scholar 

  • Visser PC (1935a) Durch Asiens Hochgebirge. Huber & Co. AG., Frauenfeld and Leipzig, pp 1–256

    Google Scholar 

  • Visser PC (1935b) Gletscherbeobachtungen im Karakorum. Z Gletscherk 22:20–45

    Google Scholar 

  • Visser PC (1938): Glaziologie. Wissenschaftliche Ergebnisse der niederländischen Expedition in den Karakorum und die angrenzenden Gebiete in den Jahren 1922, 1925 und 1929/30 und 1935. Leiden, pp 1–216

    Google Scholar 

  • Vita-Finzi C (2013) Solar history—an introduction. Springer, Dordrecht

    Google Scholar 

  • Wang H (2001) Effects of glacial isostatic adjustment since the late Pleistocene on the uplift of the Tibetan Plateau. Geophys J Int 144:448–458

    Article  Google Scholar 

  • Wiche K (1958) Die österreichische Karakorum-Expedition 1958. Mitt Geographischen Ges Wien 100:280–294

    Google Scholar 

  • Wischnewski J, Mischke S, Wang Yongbo, Herzschuh U (2011) Reconstructing climate variability on the northeastern Tibetan Plateau since the last Late glacial—a multi-proxy, dual-site approach comparing terrestrial and aquatic signals. Quat Sci Rev 30:82–97

    Article  Google Scholar 

  • Wu G, Xiao X (1991) Yadong to Golmud transect Quinghai-Tibet Plateau, China. Publication of the International Lithosphere Program, No. 189, Global Geoscience Transect, 3, 32

    Google Scholar 

  • Yamanaka H (1982) Radiocarbon ages of upper quaternary deposits in Central Nepal. Sci Rep Tohoku Univ., 7th ser. (Geogr.) 32(1)

    Google Scholar 

  • Yanhong W, Lücke A, Zhangdong J, Sumin W, Schleser GH, Battarbee RW, Weilan X (2006) Holocene climate development on the central Tibetan Plateau: a sedimentary record from Cuoe Lake. Palaeogeogr Palaeoclimatol Palaeoecol 234:328–340

    Article  Google Scholar 

  • Yi C, Li X, Qu J (2002) Quaternary glaciation of Puruogangri—the largest modern ice field in Tibet. Quat Int 97–98:111–121

    Article  Google Scholar 

  • Zhang H, Wünnemann B, Ma Y, Peng J, Pachur H-J, Li J, Qi Y, Chen G, Fang H, Feng Z (2002) Lake level and climate changes between 42,000 and 18,000 14C yr B.P. in the Tengger Desert, northwestern China. Quat Res 58(1):62–72

    Article  Google Scholar 

  • Zhu L, Wu Y, Wang J, Lin X, Ju J, Xie M, Li M, Mäusbacher R, Schwalb A, Daut G (2008) Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18(5):831–839

    Article  Google Scholar 

  • von Engelhardt W (1973) Die Bildung von Sedimenten und Sedimentgesteinen. In: von Engelhardt W, Füchtbauer H, Müller G (eds) Sediment-Petrologie, III, pp 1–378

    Google Scholar 

  • von Klebelsberg R (1948/49): Handbuch der Gletscherkunde und Glazialgeologie, vols. 1 and 2. Springer, Wien, pp 1–1028

    Google Scholar 

  • von Wissmann H (1959) Die heutige Vergletscherung und Schneegrenze in Hochasien mit Hinweis auf die Vergletscherung der letzten Eiszeit. Akademie der Wissenschaften und der Literatur Mainz, Mathetematisch-naturwissenschaftliche Klasse 14:1103–1407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuhle, M. (2018). Research Areas. In: The Glaciation of High Asia. Springer, Cham. https://doi.org/10.1007/978-3-319-77566-1_2

Download citation

Publish with us

Policies and ethics