Skip to main content

Multi-objective Cooperative Coevolutionary Algorithm with Dynamic Species-Size Strategy

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Although numbers of heuristic algorithms are successfully developed for solving portfolio optimization problems, this is not for all cases of the large-scale ones. A large-scale portfolio optimization involves dealing with the large search space and dense variance-covariance matrix associated with the problem. This paper proposed a new multi-objective algorithm for solving a large-scale optimization problem based upon the notion of cooperative coevolutionary algorithms (CCA). The new problem decomposition scheme was designed by allowing the species-size to be dynamically adjusted as the runs progress. This scheme enhances capability of traditional CCA in dealing with non-separable optimization problem. The collaborator selection method was modified to allow the proposed CCA to perform in a multi-objective (MO) optimization framework. Additionally, the proposed algorithm, named as “DMOCCA”, was implemented for solving large-scale portfolio optimization problem with cardinality constraint using the real-world data set having scale up to 2196 dimensions. Moreover, its performances were benchmarked with those of the SPEA-II and MOPSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that the data source employed provides the true Pareto front for given values of cardinality. However, these values are restricted for only K = 2, 3, 4, and 5. To conserve space, only results of K = 2 and K = 5 are reported.

References

  1. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  2. Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1102, pp. 1101–1108 (2001)

    Google Scholar 

  3. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004)

    Article  Google Scholar 

  4. Shi, Y., Teng, H., Li, Z.: Cooperative co-evolutionary differential evolution for function optimization. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1080–1088. Springer, Heidelberg (2005). https://doi.org/10.1007/11539117_147

    Chapter  Google Scholar 

  5. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178, 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iorio, A.W., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 537–548. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_56

    Chapter  Google Scholar 

  7. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: IEEE Congress on Evolutionary Computation, 2008, CEC 2008, (IEEE World Congress on Computational Intelligence), pp. 1663–1670 (2008)

    Google Scholar 

  8. Omidvar, M.N., Li, X., Yang, Z., Yao, X.: Cooperative co-evolution for large scale optimization through more frequent random grouping. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  9. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16, 210–224 (2012)

    Article  Google Scholar 

  10. Zitzler, E., Laumanns, M., Thiele, L.: SPEA-II: Improving the Strength Pareto Evolutionary Algorithm. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2002)

    Google Scholar 

  11. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8, 256–279 (2004)

    Article  Google Scholar 

  12. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  13. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization. In: ICGA, pp. 416–423 (1993)

    Google Scholar 

  14. Markowitz, H.: Portfolio selection. J. Finan. 7, 77–91 (1952)

    Google Scholar 

  15. Deb, K., Beyer, H.-G.: Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput. 9, 197–221 (2001)

    Article  Google Scholar 

  16. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8, 173–195 (2000)

    Article  Google Scholar 

  17. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoon Suksonghong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suksonghong, K., Boonlong, K. (2018). Multi-objective Cooperative Coevolutionary Algorithm with Dynamic Species-Size Strategy. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics