Skip to main content

Application of the Model of “Quantum” Metamaterials: Regular and Stochastic Dynamics of Nanolaser (Spaser)

  • Chapter
  • First Online:
Optical Metamaterials: Qualitative Models

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

  • 762 Accesses

Abstract

One of the main drawbacks of plasmonic nanostructures, restricting their potential application, is the intrinsic (ohmic) losses caused by the interaction of the free electrons of the metal with thermostat (irreversible losses) and radiative losses. The more localized light is to the metal surface, the more concentrated the plasmonic field fraction is inside the metal resulting in the appearance of higher dissipative losses (Maier in Opt Express 14:1957, 2006, 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Maier, Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express 14, 1957 (2006)

    Article  Google Scholar 

  2. A.D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982)

    Google Scholar 

  3. H. Raether, Surface Plasmons (Springer, New York, 1988)

    Google Scholar 

  4. C. Soukoulis, M. Wegener, Optical metamaterials—more bulky and less lossy. Science 330, 1633 (2010)

    Article  CAS  Google Scholar 

  5. A. Boltasseva, H. Atwater, Low-loss plasmonic metamaterials. Science 331, 290 (2011)

    Article  CAS  Google Scholar 

  6. S. Anlage, The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011)

    Article  Google Scholar 

  7. H.-T. Chen et al., Tuning the resonance in high-temperature superconducting terahertz metamaterials. PRL 105, 247402 (2010)

    Google Scholar 

  8. P. Berini, I. De Leon, Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16 (2011)

    Article  Google Scholar 

  9. C. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011)

    Article  CAS  Google Scholar 

  10. W.L. Barnes, Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661 (1998)

    Article  CAS  Google Scholar 

  11. S. Ramakrishna, J. Pendry, Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B 67, 201101(R) (2003)

    Article  Google Scholar 

  12. D.J. Bergman, M.I. Stockman, PRL 90, 027402 (2003)

    Article  Google Scholar 

  13. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  14. A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208 (2010)

    Article  CAS  Google Scholar 

  15. N. Blombergen, R. Pound, Phys. Rev. 95, 8 (1954)

    Article  Google Scholar 

  16. M. Strandberg, Phys. Rev. 106, 617 (1957)

    Google Scholar 

  17. F. Bunkin, A. Oraevsky, Izv. Vuzov. Radiophysika 2(2), 181 (1959)

    Google Scholar 

  18. O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials. Nat. Mater. 11, 573 (2012)

    Article  CAS  Google Scholar 

  19. N. Liu, L. Langguth, J.K.T. Weiss, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)

    Article  CAS  Google Scholar 

  20. C. Rockstuhl et al., Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84, 219–227 (2006)

    Article  CAS  Google Scholar 

  21. M. Husnik et al., Absolute extinction cross-section of individual magnetic split-ring resonators. Nat. Photon. 2, 614 (2008)

    Article  CAS  Google Scholar 

  22. D.E. Chang, A.S. Sorensen, P.R. Hemmer, M.D. Lukin, PRL 97, 053002 (2006)

    Google Scholar 

  23. D. Martin-Cano, L. Martin-Moreno, F. Garcia-Vidal, E. Moreno, Nano Lett. 10, 3129 (2010)

    Google Scholar 

  24. V.V. Klimov, Nanoplasmonics. Phys. Usp. 51(8), 839–844 (2008)

    Article  Google Scholar 

  25. V.V. Klimov, Nanoplasmonika. ISBN 978-5-9221-1205-5 (2010) (in Russian)

    Google Scholar 

  26. M. Stockman, Spaser explained. Nat. Photonics 2, 327 (2008)

    Article  CAS  Google Scholar 

  27. M. Stockman, The spaser as a nanoscale quantum generator and amplifier. J. Opt. 12, 024004 (2010)

    Article  Google Scholar 

  28. M. Stockman, Spaser action, loss-compensation, and stability in plasmonic systems with gain. PRL 106, 156802 (2011)

    Article  Google Scholar 

  29. N. Zheludev, S. Prosvirin, N. Papasimakis, V. Fedotov, Lasing spaser. Nat. Photonics 2, 351 (2008)

    Article  CAS  Google Scholar 

  30. M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009)

    Article  CAS  Google Scholar 

  31. R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629 (2009)

    Article  CAS  Google Scholar 

  32. M. Hill, M. Marell, E. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, M. Smit, Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107 (2009)

    Article  CAS  Google Scholar 

  33. Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, S. Zhu, Optically pumped nanolaser based on two magnetic plasmon resonance modes. APL 94, 103106 (2009)

    Google Scholar 

  34. A. Banerjee, R. Li, H. Grebel, Surface plasmon lasers with quantum dots as gain media. APL 95, 251106 (2009)

    Google Scholar 

  35. M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, Y. Fainman, Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395 (2010)

    Article  CAS  Google Scholar 

  36. R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, X. Zhang, Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110 (2011)

    Article  CAS  Google Scholar 

  37. R.A. Flynn, C.S. Kim, I. Vurgaftman, M. Kim, J.R. Meyer, A.J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, J.P. Long, A room-temperature semiconductor spaser operating near 1.5 μm. Opt. Express 19, 8954 (2011)

    Article  CAS  Google Scholar 

  38. C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, S. Gwo, Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. Nano Lett. 11, 4256 (2011)

    Article  CAS  Google Scholar 

  39. E. Plum, V.A. Fedotov, P. Kuo, D.P. Tsai, N.I. Zheludev, Opt. Express 17, 8548 (2009)

    Article  CAS  Google Scholar 

  40. Y. Lu, C.-Y. Wang, J. Kim, H.-Y. Chen, M.-Y. Lu, Y.-C. Chen, W.-H. Chang, L.-J. Chen, M.I. Stockman, C.-K. Shih, S. Gwo, Nano Lett. 14, 4381 (2014)

    Article  CAS  Google Scholar 

  41. R. Ma, R. Oulton, V. Sorger, G. Bartal, X. Zhang, Nat. Mater. 10, 110 (2010)

    Article  Google Scholar 

  42. K. Ding, Z.C. Liu, L.J. Yin, M.T. Hill, M.J.H. Marell, P.J. van Veldhoven, R. Nöetzel, C.Z. van Ning, Phys. Rev. B 85, 041301(R) (2012)

    Article  Google Scholar 

  43. Y.-J. Lu, J. Kim, H.-Y. Chen, C.I. Wu, N. Dabidian, C.E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, Science 337, 450 (2012)

    Google Scholar 

  44. W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Nat. Nanotechnol. 8, 506 (2013)

    Article  CAS  Google Scholar 

  45. R.-M. Ma, S. Ota, Y. Li, S. Yang, X. Zhang, Nat. Nanotechnol. 9, 600 (2014)

    Article  CAS  Google Scholar 

  46. A. Yang, T.B. Hoang, M. Dridi, C. Deeb, M.H. Mikkelsen, G.C. Schatz, T.W. Odom, Nat. Commun. 6, 6939 (2015)

    Article  CAS  Google Scholar 

  47. X. Meng, A.V. Kildishev, K. Fujita, K. Tanaka, V.M. Shalaev, Nano Lett. 13, 4106 (2013)

    Article  CAS  Google Scholar 

  48. E.I. Galanzha, R. Weingold, D.A. Nedosekin, M. Sarimollaoglu, A.S. Kuchyanov, R.G. Parkhomenko, A.I. Plekhanov, M.I. Stockman, V.P. Zharov, arXiv:1501.00342

  49. V. Apalkov, M.I. Stockman, Light Sci. Appl. 3, e191 (2014)

    Article  CAS  Google Scholar 

  50. Y. Yin, T. Qiu, J. Li, P. Chu, Plasmonic nano-lasers. Nano Energy 1, 25 (2012)

    Article  CAS  Google Scholar 

  51. J.A. Gordon, R.W. Ziolkowski, The design and simulated performance of a coated nano-particle laser. Opt. Express 15, 2622 (2007)

    Article  CAS  Google Scholar 

  52. S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, O. Hess, Gain and plasmon dynamics in active negative-index metamaterials. Phil. Trans. R. Soc. A 369, 3525 (2011)

    Article  Google Scholar 

  53. A. Sarychev, G. Tartakovsky, Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser, Phys. Rev. B 75, 085436 (2007)

    Google Scholar 

  54. E. Andrianov, A. Pukhov, A. Dorofeenko, A. Vinogradov, A. Lisyansky, Forced synchronization of spaser by an external optical wave. Opt. Express 19, 24849 (2011)

    Article  CAS  Google Scholar 

  55. V.M. Fain, Quantum Radio Physics, Vol. 1: Photons and Nonlinear Media (Sovetskoe Radio, Moscow, 1972) (in Russian)

    Google Scholar 

  56. G. Haken, Laser Light Dynamics (North Holland, Amsterdam, 1985)

    Google Scholar 

  57. S. Akhmanov, Y. D’yakov, A. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, Moscow, 1981) (in Russian)

    Google Scholar 

  58. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  59. I. Protsenko, A. Uskov, O. Zaimidoroga et al., Phys. Rev. A 71, 063812 (2005)

    Article  Google Scholar 

  60. N. Arnold, B. Ding, C. Hrelescu, T.A. Klar, Beilstein J. Nanotechnol. 4, 974 (2013)

    Article  CAS  Google Scholar 

  61. R.R. Chance, A. Prock, R. Silbey, in Advances in Chemical Physics, vol. 37, ed. by I. Prigogine, S.A. Rice (Wiley, Hoboken, 1978)

    Google Scholar 

  62. H. Metiu, Prog. Surf. Sci. 17, 153 (1984)

    Google Scholar 

  63. V. Pustovit, A. Urbas, A. Chipouline, T. Shahbazyan, Coulomb and quenching effects in small nanoparticle-based spasers. PRB (2016)

    Google Scholar 

  64. J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75(3), 1139 (1981)

    Article  CAS  Google Scholar 

  65. R. Ruppin, J. Chem. Phys. 76(4) (1982)

    Google Scholar 

  66. V.N. Pustovit, T.V. Shahbazyan, J. Chem. Phys. 136, 204701 (2012)

    Article  CAS  Google Scholar 

  67. N.E. Rehler, J.H. Eberly, Phys. Rev. A 3, 1735 (1971)

    Article  Google Scholar 

  68. R. Friedberg, S.R. Hartmann, Phys. Rev. A 10, 1728 (1974)

    Article  Google Scholar 

  69. B. Coffey, R. Friedberg, Phys. Rev. A 17, 1033 (1978)

    Article  CAS  Google Scholar 

  70. S. Wuestner, J.M. Hamm, A. Pusch, F. Renn, K. Tsakmakidis, O. Hess, Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials. Phys. Rev. B 85, 201406(R) (2012)

    Article  Google Scholar 

  71. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)

    Article  Google Scholar 

  72. S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H.-K. Yuan, V. Shalaev, Loss-free and active optical negative-index metamaterials. Nat. Lett. 466, 735 (2010)

    Article  CAS  Google Scholar 

  73. V. Pustovit, T. Shahbazyan, Phys. Rev. B 82, 075429 (2010)

    Article  Google Scholar 

  74. A. Schawlow, C. Townes, Phys. Rev. 112, 1940 (1958)

    Article  CAS  Google Scholar 

  75. V.S. Troitskii, Zh. Eksp. Teor. Fiz. 34, 390 (1958) [Sov. Phys. JETP 7, 271 (1958)]. Radiotekhn. Elektron. 3, 1298, (1958)

    Google Scholar 

  76. J. Singer, Masers (Wiley, New York, 1959)

    Google Scholar 

  77. A. Malakhov, Fluctuations in Self Oscillatory Systems (Nauka, Moscow, 1968) (in Russian)

    Google Scholar 

  78. F. Arecchi, M. Scully, H. Haken, W. Weidlich, Quantum Fluctuations of Laser Emission (Mir, Moscow, 1974) (in Russian)

    Google Scholar 

  79. M. Lax, in Statistical Physics, Phase Transitions and Superfluidity, vol. 271, ed. by M. Chrétien, E.P. Gross, S. Deser (Gordon and Breach, New York, 1968)

    Google Scholar 

  80. A. Yariv, Quantum Electronics, 2nd edn. (Wiley, New York, 1975)

    Google Scholar 

  81. Y. Klimontovich (ed.), Wave and Fluctuation Processes in Lasers (Nauka, Moscow, 1974) (in Russian)

    Google Scholar 

  82. A. Oraevsky, J. Opt. Soc. Am. B 5, 933 (1988)

    Article  Google Scholar 

  83. M. Scully, M. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  84. G. Strakhovskii, A. Uspenskii, Fundamentals of Quantum Electronics (Vysshaia Shkola, Moscow, 1973) (in Russian)

    Google Scholar 

  85. R. Pantell, H. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969)

    Google Scholar 

  86. S. Akhmanov, Y. D’yakov, A. Chirkin, Statistical Radiophysics and Optics. Random Oscillations and Waves in Linear Systems (Fizmatlit, Moscow, 2010) (in Russian)

    Google Scholar 

  87. S. Kuppens, M. van Exter, J. Woerdman, Quantum limited linewidth of a bad-cavity laser. PRL 72, 3815 (1994)

    Article  CAS  Google Scholar 

  88. A.Z. Khoury, M.I. Kolobov, L. Davidovich, Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening. Phys. Rev. A 53, 1120 (1996)

    Article  CAS  Google Scholar 

  89. M. Exter, S. Kuppens, J. Woerdman, Theory for the linewidth of a bad-cavity laser. Phys. Rev. A 51, 809 (1995)

    Article  Google Scholar 

  90. A.S. Chirkin, A.V. Chipouline, Generalized expression for the natural width of the radiation spectrum of quantum oscillators. JETP Lett. 93, 114 (2011)

    Article  CAS  Google Scholar 

  91. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability) (Springer, Berlin, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Application of the Model of “Quantum” Metamaterials: Regular and Stochastic Dynamics of Nanolaser (Spaser). In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_11

Download citation

Publish with us

Policies and ethics