Skip to main content

Application of the Model of “Quantum” Metamaterials: Metamaterial Caused Enhancement of Nonlinear Response

  • Chapter
  • First Online:
  • 740 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

Abstract

In this chapter, the first demonstration of exceptional light-with-light optical switching performance of the carbon nanotube MM—hybrid nanostructure of plasmonic MM hybridized with semiconducting single-walled carbon nanotubes (CNT) is provided. Modulation depth of 10% in the near-IR with sub-500 fs response time is achieved with the pump fluency of just 10 μJ/cm2, which is order of magnitude lower than in previously reported artificial nanostructures. Since spectral position of the excitonic response and MM plasmonic resonance can be adjusted by using CTNs of different diameter and scaling MM design, the giant nonlinear response of the hybrid MM—in principle—can be engineered to cover the entire second and third telecom windows, from O to U-band.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, N. Zheludev, Carbon nanotubes in a photonic metamaterials. PRL 104, 153902 (2010)

    Article  Google Scholar 

  2. A. Chipouline, S. Sugavanam, V.A. Fedotov, A.E. Nikolaenko, Analytical model for active metamaterials with quantum ingredients. J. Opt. 14, 114005 (2012)

    Article  Google Scholar 

  3. A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208 (2010)

    Article  CAS  Google Scholar 

  4. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)

    Article  Google Scholar 

  5. N. Zheludev, Nonlinear optics on the nanoscale. Contemp. Phys. 43, 365 (2002)

    Article  CAS  Google Scholar 

  6. V. Almeida, C. Barrios, R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081 (2004)

    Article  CAS  Google Scholar 

  7. K. MacDonald, Z. Samson, M. Stockman, N. Zheludev, Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009)

    Article  CAS  Google Scholar 

  8. N. Zheludev, The road ahead for metamaterials. Science 328, 582 (2010)

    Article  CAS  Google Scholar 

  9. W. Padilla, A. Taylor, C. Highstrete, M. Lee, R. Averitt, Dynamical electric and magnetic metamaterial response at terahertz frequencies. PRL 96, 107401 (2006)

    Article  CAS  Google Scholar 

  10. D.J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A.M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, Y.R. Shen, Ultrafast modulation of optical metamaterials. Opt. Express 17, 17652 (2009)

    Article  CAS  Google Scholar 

  11. K.M. Dani, Z. Ku, P.C. Upadhya, R.P. Prasankumar, A.J. Taylor, S.R.J. Brueck, Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device. Opt. Express 19, 3973 (2011)

    Article  CAS  Google Scholar 

  12. J. Pendry, A. Holden, D. Robbins, W. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  Google Scholar 

  13. M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K.F. MacDonald, A. Nikolaenko, J. Xu, M. Gu, N. Zheludev, Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. Published on-line, http://onlinelibrary.wiley.com/doi/10.1002/adma.201103162/abstract

  14. Y.-C. Chen, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, X.-C. Zhang, Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. APL 81, 975–977 (2002)

    CAS  Google Scholar 

  15. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, H. Mitsu, Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications. Adv. Mater. 15, 534–537 (2003)

    Article  CAS  Google Scholar 

  16. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. PRL 99, 147401 (2007)

    Article  CAS  Google Scholar 

  17. B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, C. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  Google Scholar 

  18. A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, N. Zheludev, THz bandwidth optical switching with carbon nanotube metamaterial. Opt. Express 20(6), 6068 (2012)

    Article  CAS  Google Scholar 

  19. L. Huang, H.N. Pedrosa, T.D. Krauss, Ultrafast ground-state recovery of single-walled carbon nanotubes. PRL 93, 017403 (2004)

    Article  Google Scholar 

  20. G. Ostojic, S. Zaric, J. Kono, M. Strano, V. Moore, R. Hauge, R. Smalley, Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. PRL 92, 117402 (2004)

    Article  CAS  Google Scholar 

  21. W.B. Cho, J.H. Yim, S.Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, F. Rotermund, Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers. Adv. Funct. Mater. 20, 1937 (2010)

    Article  CAS  Google Scholar 

  22. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21, 3874 (2009)

    Article  CAS  Google Scholar 

  23. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, 2003)

    Google Scholar 

  24. K.H. Fong, K. Kikuchi, C.S. Goh, S.Y. Set, R. Grange, M. Haiml, A. Schlatter, U. Keller, Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett. 32, 38–40 (2007)

    Article  CAS  Google Scholar 

  25. M. O’Connell, S. Bachilo, C. Huffman, V. Moore, M. Strano, E. Haroz, K. Rialon, P.J. Boul, W. Noon, C. Kittrell, J. Ma, R. Hauge, R. Weisman, R. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002)

    Article  Google Scholar 

  26. K. Tanaka, E. Plum, J.Y. Ou, T. Uchino, N. Zheludev, Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial. PRL 105, 227403 (2010)

    Article  CAS  Google Scholar 

  27. F. Wang, G. Dukovic, L. Brus, T. Heinz, Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. PRL 92, 177401 (2004)

    Article  Google Scholar 

  28. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. Strano, Excited-state carrier lifetime in singlewalled carbon nanotubes. Phys. Rev. B 71, 033402 (2005)

    Article  Google Scholar 

  29. P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2, 341–350 (2008)

    Article  CAS  Google Scholar 

  30. A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, H. Okamoto, Large optical nonlinearity of femiconducting single-walled carbon nanotubes under resonant excitations. PRL 94, 047404 (2005)

    Article  CAS  Google Scholar 

  31. M.C. Hersam, Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotech. 3, 387 (2008)

    Article  CAS  Google Scholar 

  32. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Application of the Model of “Quantum” Metamaterials: Metamaterial Caused Enhancement of Nonlinear Response. In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_10

Download citation

Publish with us

Policies and ethics