Skip to main content

Introduction to Optical Metamaterials: Motivation and Goals

  • Chapter
  • First Online:
Optical Metamaterials: Qualitative Models

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

  • 798 Accesses

Abstract

It is necessary to reconstruct the textbooks and change some pedagogical methods in lecturing of electrodynamics… It turned out to be necessarily to elaborate the electrodynamics from fundamental principles taking into account possible magnetic effects.

It is necessary to reconstruct the textbooks and change some pedagogical methods in lecturing of electrodynamics… It turned out to be necessarily to elaborate the electrodynamics from fundamental principles taking into account possible magnetic effects.

Prof. V. G. Veselago

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  Google Scholar 

  2. H. Lamb, Negative phase velocity and its consequence in hydrodynamics: “On group velocity”. Proc. Lond. Math. Soc. 1, 473–479 (1904)

    Article  Google Scholar 

  3. A. Schuster, Negative Phase Velocity and Its Consequence in Optics: An Introduction to the Theory of Optics (Edward Arnold, 1904)

    Google Scholar 

  4. L. Mandelshtam, Optical properties of the left-handed media: the 4th lecture of L. I. Mandel’shtam given at Moscow State University (05/05/1944). Nauka 5, 461 (1994)

    Google Scholar 

  5. N.A. Khizhnyak, Anomalously large effective dielectric and magnetic constants for the resonant regimes of elementary scatterers: artificial anisotropic dielectrics formed from two-dimensional lattices of infinite bars and rods. Sov. Phys. Technol. Phys. 29, 604–614 (1959)

    Google Scholar 

  6. R. Shelby, D. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  CAS  Google Scholar 

  7. A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005)

    Article  CAS  Google Scholar 

  8. V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, A. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356 (2005)

    Article  Google Scholar 

  9. H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, V. Shalaev, Opt. Lett. 32, 1671 (2007)

    Article  Google Scholar 

  10. G. Dolling, M. Wegener, C. Soukoulis, Opt. Lett. 32, 53 (2007)

    Article  CAS  Google Scholar 

  11. J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, X. Zhang, Nature 455, 376 (2008)

    Article  CAS  Google Scholar 

  12. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, Nat. Mater. 8, 568 (2009)

    Article  CAS  Google Scholar 

  13. A. Alu, N. Engheta, Phys. Rev. Lett. 102, 1 (2009)

    Article  Google Scholar 

  14. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, C.T. Chan, PRL 102, 1 (2009)

    Google Scholar 

  15. M. Farhat, S. Guenneau, S. Enoch, PRL 103, 1 (2009)

    Article  Google Scholar 

  16. B. Justice, S. Cummer, J. Pendry, A. Starr, Science 314, 977 (2006)

    Article  Google Scholar 

  17. U. Leonhardt, Science 312, 1777 (2006)

    Article  CAS  Google Scholar 

  18. E.E. Narimanov, A.V. Kildishev, APL 95, 041106 (2009)

    Google Scholar 

  19. S. Vukovic, I. Shadrivov, Y. Kivshar, Appl. Phys. Lett. 95, 041902 (2009)

    Article  Google Scholar 

  20. D.Ö. Göuney, D.A. Meyer, Phys. Rev. A 79, 1 (2009)

    Google Scholar 

  21. N. Papasimakis, V. Fedotov, N. Zheludev, PRL 101, 253903 (2008)

    Article  CAS  Google Scholar 

  22. N. Liu, L. Langguth, J.K.T. Weiss, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)

    Article  CAS  Google Scholar 

  23. C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E.B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, T. Pertsch, Opt. Lett. 34, 704 (2009)

    Article  CAS  Google Scholar 

  24. C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Opt. Lett. 34, 1603 (2009)

    Article  CAS  Google Scholar 

  25. M. Thiel, G. von Freymann, S. Linden, M. Wegener, Opt. Lett. 34, 19 (2009)

    Article  Google Scholar 

  26. B. Bai, Y. Svirko, J. Turunen, T. Vallius, Phys. Rev. A 76, 023811 (2007)

    Article  Google Scholar 

  27. L. Arnaut, J. Electromagn. Waves Appl. 11, 1459 (1997)

    Article  Google Scholar 

  28. J. Reyes, A. Lakhtakia, Opt. Commun. 266, 565 (2006)

    Article  Google Scholar 

  29. S. Prosvirnin, N. Zheludev, J. Opt. A: Pure Appl. Opt. 11, 074002 (2009)

    Article  Google Scholar 

  30. S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003)

    Article  Google Scholar 

  31. V. Fedotov, P. Mladyonov, S. Prosvirnin, A.V. Rogacheva, Y. Chen, N. Zheludev, PRL 97, 167401 (2006)

    Article  CAS  Google Scholar 

  32. S. Zhukovsky, A. Novitsky, V. Galynsky, Opt. Lett. 34, 1988 (2009)

    Article  Google Scholar 

  33. J. Pendry, Science 306, 1353 (2004)

    Article  CAS  Google Scholar 

  34. S. Tretyakov, A. Sihvola, L. Jylhä, Photonics Nanostruct. Fundam. Appl. 3, 107 (2005)

    Article  Google Scholar 

  35. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. Soukoulis, Phys. Rev. B 79, 1 (2009)

    Google Scholar 

  36. K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966)

    Article  Google Scholar 

  37. A. Taflove, S.C. Hagness, Computational Electrodynamics, 3rd edn. (Artech House, Boston, 2005)

    Google Scholar 

  38. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997)

    Article  Google Scholar 

  39. C. Rockstuhl, M.G. Salt, H.P. Herzig, JOSA A 20, 1969 (2003)

    Article  Google Scholar 

  40. B.T. Draine, P.J. Flatau, JOSA A 11, 1491 (1994)

    Article  Google Scholar 

  41. C. Hafner, The Generalized Multipole Technique for Computational, Electromagnetics (Artech House, Boston, 1990)

    Google Scholar 

  42. V. Podolskiy, A. Sarychev, E. Narimanov, V. Shalaev, J. Opt. A: Pure Appl. Opt. 7, 32 (2005)

    Article  Google Scholar 

  43. A. Podolskiy, A. Sarychev, V. Shalaev, Opt. Express 11, 735 (2003)

    Article  Google Scholar 

  44. A. Sarychev, G. Shvets, V. Shalaev, Phys. Rev. E 73, 036609 (2006)

    Article  Google Scholar 

  45. A.N. Lagarkov, A.K. Sarychev, Phys. Rev. B 53, 6318 (1996)

    Article  CAS  Google Scholar 

  46. L. Panina, A. Grigorenko, D. Makhnovskiy, Phys. Rev. B 66, 155411 (2002)

    Article  Google Scholar 

  47. T.P. Meyrath, T. Zentgraf, H. Giessen, Phys. Rev. B 75, 205102 (2007)

    Article  Google Scholar 

  48. N. Zheludev, The road ahead for metamaterials. Science 328, 582 (2010)

    Article  CAS  Google Scholar 

  49. N. Zheludev, A roadmap for metamaterials. OPN Opt. Photonics News 31 (2011)

    Google Scholar 

  50. M. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029 (2011)

    Article  Google Scholar 

  51. C. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)

    Article  CAS  Google Scholar 

  52. N. Lindquist, P. Nagpal, K. McPeak, D. Norris, S.-H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 75, 036501 (2012)

    Article  Google Scholar 

  53. M. Stockman, Spaser explained. Nat. Photonics 2, 327 (2008)

    Article  CAS  Google Scholar 

  54. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, C. Soukoulis, Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. PRL 107, 043901 (2011)

    Article  Google Scholar 

  55. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Science 330, 1510 (2010)

    Article  CAS  Google Scholar 

  56. G. Afanasiev, Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering. J. Phys. A: Math. Gen. 27, 2143 (1994)

    Article  Google Scholar 

  57. K. Marinov, A.D. Boardman, V.A. Fedotov, N. Zheludev, Toroidal metamaterial. New J. Phys. 9, 324 (2007)

    Article  Google Scholar 

  58. V.A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, N.I. Zheludev, Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep. 3, 2967 (2013)

    Article  CAS  Google Scholar 

  59. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239 (2012)

    Article  Google Scholar 

  60. I.B. Zeldovich, Electromagnetic interaction with parity violation. JETP 33, 1531 (1957)

    CAS  Google Scholar 

  61. G. Afanasiev, Simplest source of electromagnetic fields as a tool for testing the reciprocity-like theorems. J. Phys. D: Appl. Phys. 34, 539 (2001)

    Article  CAS  Google Scholar 

  62. A. Miroshnichenko, A. Evlyukhin, Y.F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, Y. Kivshar, Observation of an anapole with dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

    Article  CAS  Google Scholar 

  63. V. Agranovich, V. Ginzburg, Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Crystal Optics with Spatial Dispersion, and Excitons) (Nauka, Moscow, 1965) [Translated into English (Springer, Berlin, 1984)]

    Google Scholar 

  64. V. Agranovich, Yu. Gartstein, Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability. Metamaterials 3, 1 (2009)

    Article  CAS  Google Scholar 

  65. V. Agranovich, Yu. Gartstein, Spatial dispersion and negative refraction of light. Phys. Usp. 49(10), 1029 (2006)

    Article  CAS  Google Scholar 

  66. A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, A. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86, 035127 (2012)

    Article  Google Scholar 

  67. C. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 13, 013001 (2011)

    Article  Google Scholar 

  68. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Boston, 2003)

    Google Scholar 

  69. A. Vinogradov, Electrodynamics of Compound Media (Scientific and Educational Literature Publisher, Russian Federation, 2001). ISBN 5-8360-0283-5 (in Russian)

    Google Scholar 

  70. P. Mazur, B. Nijboer, On the statistical mechanics of matter in an electromagnetic field. I. Physica XIX, 971 (1953)

    Article  Google Scholar 

  71. N. Papasimakis, V. Fedotov, K. Marinov, N. Zheludev, Gyrotropy of a metamolecule: wire on a torus. PRL 103, 093901 (2009)

    Article  CAS  Google Scholar 

  72. A. Vinogradov, A. Merzlikin, Comment on “Basics of averaging of the Maxwell equations for bulk materials”. Metamaterials 6, 121 (2012)

    Article  Google Scholar 

  73. C. Simovski, Material parameters of metamaterials (a review). Opt. Spectrosc. 107, 726 (2009)

    Article  CAS  Google Scholar 

  74. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  75. C. Simovski, Weak Spatial Dispersion in Composite Media (Polytechnika, St. Petersburg, 2003) (in Russian)

    Google Scholar 

  76. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Introduction to Optical Metamaterials: Motivation and Goals. In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_1

Download citation

Publish with us

Policies and ethics