Skip to main content

Cellular Automata Applications in Shortest Path Problem

  • Chapter
  • First Online:
Shortest Path Solvers. From Software to Wetware

Abstract

Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra’s algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms’ behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum’s behavior, finding the minimum-length path between two points in a labyrinth is given. The CA-based model results are found in very good agreement with the computation results produced by the in-vivo experiments especially when combined with truly parallel implementations of this CA in a Field Programmable Gate Array (FPGA) and on a Graphical Processing Unit (GPU). The presented implementations succeed to take advantage of the CA’s inherit parallelism and significantly improve the performance of the CA algorithm when compared with software in terms of computational speed and power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.I. Adamatzky, Identification of Cellular Automata (Taylor & Francis, 1994)

    Google Scholar 

  2. A.I. Adamatzky, Computation of shortest path in cellular automata. Math. Comput. Modell. 23(4), 105–113 (1996)

    Article  MathSciNet  Google Scholar 

  3. H. Beigy, M.R. Meybodi, Utilizing distributed learning automata to solve stochastic shortest path problems. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 14(05), 591–615 (2006)

    Article  MathSciNet  Google Scholar 

  4. K. Charalampous, A. Amanatiadis, A. Gasteratos, Efficient robot path planning in the presence of dynamically expanding obstacles. Cell. Autom. 330–339 (2012)

    Google Scholar 

  5. K. Charalampous, I. Kostavelis, A. Amanatiadis, A. Gasteratos, Real-time robot path planning for dynamic obstacle avoidance. J. Cell. Automata 9 (2014)

    Google Scholar 

  6. M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti, Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Trans. Ind. Electron. 55(11), 3944–3953 (2008)

    Article  Google Scholar 

  7. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  8. N.I. Dourvas, G.Ch. Sirakoulis, A.I. Adamatzky. Cellular automaton Belousov-Zhabotinsky model for binary full adder. Int. J. Bifurcat. Chaos 27(06), 1750089 (2017)

    Article  MathSciNet  Google Scholar 

  9. N.I. Dourvas, M.-A.I. Tsompanas, G.Ch. Sirakoulis, Parallel Acceleration of Slime Mould Discrete Models (Springer International Publishing, Cham, 2016), pp. 595–617

    Chapter  Google Scholar 

  10. N. Dourvas, M.-A.I. Tsompanas, G.Ch. Sirakoulis, P. Tsalides, Hardware acceleration of cellular automata physarum polycephalum model. Parallel Process. Lett. 25(01), 1540006 (2015)

    Article  MathSciNet  Google Scholar 

  11. S. El Yacoubi, J. Was, S. Bandini (eds.), Cellular Automata—12th International Conference on Cellular Automata for Research and Industry, ACRI 2016, Fez, Morocco, 5–8 Sept 2016. Proceedings, volume 9863 of Lecture Notes in Computer Science (Springer, 2016)

    MATH  Google Scholar 

  12. V. Evangelidis, M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Slime mould imitates development of roman roads in the Balkans. J. Archaeol. Sci.: Rep. 2, 264–281 (2015)

    Article  Google Scholar 

  13. D. Ferguson, A. Stentz, Using interpolation to improve path planning: the field d* algorithm. J. Field Robot. 23(2), 79–101 (2006)

    Article  Google Scholar 

  14. G. Fishman, A comparison of four Monte Carlo methods for estimating the probability of s–t connectedness. IEEE Trans. Rel. 35(2), 145–155 (1986)

    Article  Google Scholar 

  15. R.W. Floyd, Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  16. I.G. Georgoudas, G. Koltsidas, G.Ch. Sirakoulis, I.Th. Andreadis, A Cellular Automaton Model for Crowd Evacuation and Its Auto-Defined Obstacle Avoidance Attribute (Springer, Berlin, Heidelberg, 2010), pp. 455–464

    Google Scholar 

  17. T. Giitsidis, G.Ch. Sirakoulis, Modeling passengers boarding in aircraft using cellular automata. IEEE/CAA J. Autom. Sinica 3(4), 365–384 (2016)

    Google Scholar 

  18. C. Hochberger, R. Hoffmann, CDL—a language for cellular processing, in Proceedings of the Second International Conference on Massively Parallel Computing Systems, ed. by G.R. Sechi (1996), pp. 41–64

    Google Scholar 

  19. C. Hochberger, R. Hoffmann, Solving routing problems with cellular automata, in Proceedings of the Second Conference on Cellular Automata for Research and Industry (ACRI ’96) (1996), pp. 89–98

    Chapter  Google Scholar 

  20. C. Hochberger, R. Hoffmann, S. Waldschmidt, Compilation of CDL for different target architectures, in Parallel Computing Technologies, ed. by V. Malyshkin (1995), pp. 169–179

    Google Scholar 

  21. R. Hoffmann, K.-P. Völkmann, M. Sobolewski, The cellular processing machine CEPRA-8L. Math. Res. 81, 179–199 (1994)

    Google Scholar 

  22. H. Hussain, Integration eines Compilers fur die Zellularsprache CDL in das XCellsim–System (Techn. Univ. Darmstadt, Comp. Science Dept., 1994)

    Google Scholar 

  23. T. Hwu, J. Isbell, N. Oros, J. Krichmar, A self-driving robot using deep convolutional neural networks on neuromorphic hardware, in 2017 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2017), pp. 635–641

    Google Scholar 

  24. K. Ioannidis, G.Ch. Sirakoulis, I. Andreadis, A path planning method based on cellular automata for cooperative robots. Appl. Artif. Intell. 25(8), 721–745 (2011)

    Article  Google Scholar 

  25. K. Ioannidis, G.Ch. Sirakoulis, I. Andreadis, Cellular ants: a method to create collision free trajectories for a cooperative robot team. Robot. Auton. Syst. 59(2), 113–237 (2011)

    Article  Google Scholar 

  26. K. Ioannidis, G.Ch. Sirakoulis, I. Andreadis, Cellular automata-based architecture for cooperative miniature robots. J. Cell. Autom. 8(1–2), 91–111 (2013)

    Google Scholar 

  27. D.B. Johnson, A note on Dijkstra’s shortest path algorithm. J. ACM 20(3), 385–388 (1973)

    Article  MathSciNet  Google Scholar 

  28. V.S. Kalogeiton, D.P. Papadopoulos, I.P. Georgilas, G.Ch. Sirakoulis, A.I. Adamatzky, Biomimicry of Crowd Evacuation with a Slime Mould Cellular Automaton Model (Springer International Publishing, Cham, 2015), pp. 123–151

    Google Scholar 

  29. V.S. Kalogeiton, D.P. Papadopoulos, I.P. Georgilas, G.Ch. Sirakoulis, A.I. Adamatzky, Cellular automaton model of crowd evacuation inspired by slime mould. International Journal of General Systems 44(3), 354–391 (2015)

    Article  MathSciNet  Google Scholar 

  30. M.G. Kechaidou, G.Ch. Sirakoulis. Game of life variations for image scrambling. J. Comput. Sci. 21(Supplement C), 432–447 (2017)

    Article  Google Scholar 

  31. K. Konstantinidis, A. Amanatiadis, S.A. Chatzichristofis, R. Sandaltzopoulos, G.Ch. Sirakoulis, Identification and retrieval of DNA genomes using binary image representations produced by cellular automata, in 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, Oct 2014, pp. 134–137

    Google Scholar 

  32. C.Y. Lee, An algorithm for path connections and its applications. IRE Trans. Electron. Comput. EC-10(2), 346–365 (1961)

    Article  MathSciNet  Google Scholar 

  33. J. Li, B.H. Wang, P.Q. Jiang, T. Zhou, W.X. Wang, Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica 55(8), 4051–4057 (2006)

    Google Scholar 

  34. J.-H. Liang, C.-H. Lee, Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Adv. Eng. Softw. 79, 47–56 (2015)

    Article  Google Scholar 

  35. S. Liu, D. Sun, C. Zhu, A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming. Robot. Comput.-Integr. Manuf. 30(6), 589–596 (2014)

    Article  Google Scholar 

  36. A. Macwan, J. Vilela, G. Nejat, B. Benhabib, A multirobot path-planning strategy for autonomous wilderness search and rescue. IEEE Trans. Cybern. 45(9), 1784–1797 (2015)

    Article  Google Scholar 

  37. F.M. Marchese, Multi-resolution hierarchical motion planner for multi-robot systems on spatiotemporal cellular automata, in Robots and Lattice Automata (Springer, 2015), pp. 149–173

    Google Scholar 

  38. V.A. Mardiris, G.Ch. Sirakoulis, I.G. Karafyllidis, Automated design architecture for 1-D cellular automata using quantum cellular automata. IEEE Trans. Comput. 64(9), 2476–2489 (2015)

    Article  MathSciNet  Google Scholar 

  39. S. Mastellone, D.M. Stipanovic, M.W. Spong, Remote formation control and collision avoidance for multi-agent nonholonomic systems, in 2007 IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 1062–1067

    Google Scholar 

  40. S.K. Moghaddam, E. Masehian, Planning robot navigation among movable obstacles (NAMO) through a recursive approach. J. Intell. Robot. Syst. 83(3–4), 603–634 (2016)

    Article  Google Scholar 

  41. F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano, A. Martinoli, The e-puck, a robot designed for education in engineering, in Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1 (IPCB: Instituto Politécnico de Castelo Branco, 2009), pp. 59–65

    Google Scholar 

  42. O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)

    Article  Google Scholar 

  43. K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic. Journal de Physique I 2(12), 2221–2229 (1992)

    Article  Google Scholar 

  44. T. Nakagaki, H. Yamada, Á. Tóth, Intelligence: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  45. L. Nalpantidis, G.Ch. Sirakoulis, A. Gasteratos, Non-probabilistic cellular automata-enhanced stereo vision simultaneous localization and mapping. Meas. Sci. Technol. 22(11), 114027 (2011)

    Article  Google Scholar 

  46. T.P. Nascimento, A.G.S. Conceiçao, A.P. Moreira, Multi-robot nonlinear model predictive formation control: the obstacle avoidance problem. Robotica 34(3), 549–567 (2016)

    Article  Google Scholar 

  47. A. Nash, S. Koenig, Any-angle path planning. AI Mag. 34(4), 85–107 (2013)

    Article  Google Scholar 

  48. C. Nieto-Granda, J.G. Rogers III, H.I. Christensen, Coordination strategies for multi-robot exploration and mapping. Int. J. Robot. Res. 33(4), 519–533 (2014)

    Article  Google Scholar 

  49. V.G. Ntinas, B.E. Moutafis, G.A. Trunfio, G.Ch. Sirakoulis, Parallel fuzzy cellular automata for data-driven simulation of wildfire spreading. J. Comput. Sci. 21(Supplement C), 469–485 (2017)

    Article  Google Scholar 

  50. A. Pandey, R.K. Sonkar, K.K. Pandey, D.R. Parhi, Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller, in 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO) (IEEE, 2014), pp. 39–41

    Google Scholar 

  51. M.A. Porta Garcia, O. Montiel, O. Castillo, R. Sepúlveda, P. Melin, Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9(3), 1102–1110 (2009)

    Article  Google Scholar 

  52. H. Qu, K. Xing, T. Alexander, An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing 120, 509–517 (2013)

    Article  Google Scholar 

  53. G.Ch. Sirakoulis, A.I. Adamatzky, Robots and Lattice Automata (Springer Publishing Company, Incorporated, 2014)

    Google Scholar 

  54. G.Ch. Sirakoulis, S. Bandini (eds.), Cellular Automata—10th International Conference on Cellular Automata for Research and Industry, ACRI 2012, Santorini Island, Greece, 24–27 Sept 2012. Proceedings, volume 7495 of Lecture Notes in Computer Science (Springer, 2012)

    MATH  Google Scholar 

  55. G.Ch. Sirakoulis, I. Karafyllidis, V. Mardiris, A. Thanailakis, Study of lithography profiles developed on non-planar SI surfaces. Nanotechnology 10(4), 421 (1999)

    Article  Google Scholar 

  56. G.Ch. Sirakoulis, I. Karafyllidis, D. Soudris, N. Georgoulas, A. Thanailakis, A new simulator for the oxidation process in integrated circuit fabrication based on cellular automata. Modell. Simul. Mater. Sci. Eng. 7(4), 631 (1999)

    Article  Google Scholar 

  57. A. Stentz et al., The focussed d\(^{*}\) algorithm for real-time replanning. IJCAI 95, 1652–1659 (1995)

    Google Scholar 

  58. Q. Sun, Z.J. Dai, A new shortest path algorithm using cellular automata model. Comput. Technol. Dev. 19(2), 42–44 (2009)

    Google Scholar 

  59. U.A. Syed, F. Kunwar, M. Iqbal, Guided autowave pulse coupled neural network (GAPCNN) based real time path planning and an obstacle avoidance scheme for mobile robots. Robot. Auton. Syst. 62(4), 474–486 (2014)

    Article  Google Scholar 

  60. A. Tsiftsis, G.Ch. Sirakoulis, J. Lygouras, FPGA Processor with GPS for modelling railway traffic flow. J. Cell. Autom. 12(5), 381–400 (2015)

    Google Scholar 

  61. A. Tsiftsis, I.G. Georgoudas, G.Ch. Sirakoulis, Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation. IEEE Syst. J. 10(2), 649–660 (2016)

    Article  Google Scholar 

  62. M.-A.I. Tsompanas, A.I. Adamatzky, G.Ch. Sirakoulis, J. Greenman, I. Ieropoulos, Towards implementation of cellular automata in microbial fuel cells. PLoS ONE 12, 1–16 (2017)

    Article  Google Scholar 

  63. M.-A.I. Tsompanas, G.Ch. Sirakoulis, Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspir. Biomimetics 7(3), 036013 (2012)

    Article  Google Scholar 

  64. M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Cellular Automata Models Simulating Slime Mould Computing (Springer International Publishing, Cham, 2016), pp. 563–594

    Chapter  Google Scholar 

  65. M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Evolving transport networks with cellular automata models inspired by slime mould. IEEE Trans. Cybern. 45(9), 1887–1899 (2015)

    Article  Google Scholar 

  66. M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Physarum in silicon: the Greek motorways study. Nat. Comput. 15(2), 279–295 (2016)

    Article  MathSciNet  Google Scholar 

  67. M.-A.I. Tsompanas, R. Mayne, G.Ch. Sirakoulis, A.I. Adamatzky, A cellular automata bioinspired algorithm designing data trees in wireless sensor networks. Int. J. Distrib. Sensor Netw. 11(6), 471045 (2015)

    Article  Google Scholar 

  68. P.G. Tzionas, A. Thanailakis, P.G. Tsalides, Collision-free path planning for a diamond-shaped robot using two-dimensional cellular automata. IEEE Trans. Robot. Autom. 13(2), 237–250 (1997)

    Article  Google Scholar 

  69. J. Von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press, Champaign, IL, USA, 1966)

    Google Scholar 

  70. Y. Wang, Study for solving the path on the three-dimensional surface based on cellular automata method. Modern Appl. Sci. 4(5), 196–200 (2010)

    MATH  Google Scholar 

  71. X.G.M. Wang, Y. Qian, Improved calculation method of shortest path with cellular automata model. Kybernetes 41(3–4), 508–517 (2012)

    Article  MathSciNet  Google Scholar 

  72. S. Warshall, A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)

    Article  MathSciNet  Google Scholar 

  73. J. Was, G.Ch. Sirakoulis, S. Bandini (eds.), Cellular Automata—11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland, 22–25 Sept 2014. Proceedings, volume 8751 of Lecture Notes in Computer Science (Springer, 2014)

    Google Scholar 

  74. X.J. Wu, H.F. Xue, Shortest path algorithm based on cellular automata extend model. Comput. Appl. 24(5), 92–3 (2004)

    Google Scholar 

  75. X. Zhang, Y. Zhang, Z. Zhang, S. Mahadevan, A. Adamatzky, Y. Deng, Rapid physarum algorithm for shortest path problem. Appl. Soft Comput. 23, 19–26 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsompanas, MA.I., Dourvas, N.I., Ioannidis, K., Sirakoulis, G.C., Hoffmann, R., Adamatzky, A. (2018). Cellular Automata Applications in Shortest Path Problem. In: Adamatzky, A. (eds) Shortest Path Solvers. From Software to Wetware. Emergence, Complexity and Computation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-77510-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77510-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77509-8

  • Online ISBN: 978-3-319-77510-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics