Skip to main content

Slime Mould Inspired Models for Path Planning: Collective and Structural Approaches

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 32))

Abstract

Path planning is a classic and important problem in computer science, with manifold applications in transport optimisation, delivery scheduling, interactive visualisation and robotic trajectory planning. The task has been the subject of classical, heuristic and bio-inspired solutions to the problem. Path planning can be performed in both non-living and living systems. Amongst living organisms which perform path planning, the giant amoeboid single-celled organism slime mould Physarum polycephalum has been shown to possess this ability. The field of slime mould computing has been created in recent decades to exploit the behaviour of this remarkable organism in both classical algorithms and unconventional computing schemes. In this chapter we give an overview of two recent approaches to slime mould inspired computing. The first utilises emergent behaviour in a multi-agent population, behaving in both non-coupled and coupled modes which correspond to slime mould foraging and adaptation respectively. The second method is the structural approach which employs numerical solutions to volumetric topological optimisation. Although both methods exploit physical processes, they are generated and governed using very different techniques. Despite these differences we find that both approaches successfully exhibit path planning functionality. We demonstrate novel properties found in each approach which suggest that these methods are complementary and may be applicable to application domains which require structural and mechanical adaptation to changing environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Raja, S. Pugazhenthi, Optimal path planning of mobile robots: a review. Int. J. Phys. Sci. 7(9), 1314–1320 (2012)

    Article  Google Scholar 

  2. C. Tam, R. Bucknall, A. Greig, Review of collision avoidance and path planning methods for ships in close range encounters. J. Navig. 62(3), 455 (2009)

    Article  Google Scholar 

  3. D.J. Zhu, J.-C. Latombe, New heuristic algorithms for efficient hierarchical path planning. IEEE Trans. Robot. Autom. 7(1), 9–20 (1991)

    Article  Google Scholar 

  4. J.H. Liang, C.H. Lee, Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Adv. Eng. Softw. 79, 47–56 (2015)

    Article  Google Scholar 

  5. A. Adamatzky, Physical maze solvers. All twelve prototypes implement 1961 Lee algorithm. In Emergent Computation (Springer, 2017), pp. 489–504

    Google Scholar 

  6. T. Nakagaki, Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152(9), 767–770 (2001)

    Article  Google Scholar 

  7. A. Adamatzky, Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. NanoBioscience 11(2), 131–134 (2012)

    Article  Google Scholar 

  8. A. Safonov, J. Jones, Physarum computing and topology optimisation. Int. J. Parallel Emerg. Distrib. Syst. 32(5), 448–465 (2017)

    Article  Google Scholar 

  9. A. Adamatzky, Advances in Physarum Machines: Sensing and Computing with Slime Mould, vol. 21 (Springer, 2016)

    Google Scholar 

  10. P. Christen, K. Ito, R. Ellouz, S. Boutroy, E. Sornay-Rendu, R.D. Chapurlat, B. van Rietbergen, Bone remodelling in humans is load-driven but not lazy. Nat. Commun. 5 (2014)

    Article  Google Scholar 

  11. B. Mazzolai, C. Laschi, P. Dario, S. Mugnai, S. Mancuso, The plant as a biomechatronic system. Plant Signal. Behav. 5(2), 90–93 (2010)

    Article  Google Scholar 

  12. J. Bruthans, J. Soukup, J. Vaculikova, M. Filippi, J. Schweigstillova, A.L. Mayo, D. Masin, G. Kletetschka, J. Rihosek, Sandstone landforms shaped by negative feedback between stress and erosion. Nat. Geosci. 7(8), 597–601 (2014)

    Article  Google Scholar 

  13. W. Achtziger, M.P. BendsOe, J.E. Taylor, An optimization problem for predicting the maximal effect of degradation of mechanical structures. SIAM J. Optim. 10(4), 982–998 (2000)

    Article  MathSciNet  Google Scholar 

  14. J.F. Miller, S.L. Harding, G. Tufte, Evolution-in-materio: evolving computation in materials. Evol. Intell. 7(1), 49–67 (2014)

    Article  Google Scholar 

  15. A.J. Turner, J.F. Miller, Neuroevolution: evolving heterogeneous artificial neural networks. Evol. Intell. 7(3), 135–154 (2014)

    Article  Google Scholar 

  16. W. Banzhaf, G. Beslon, S. Christensen, J.A. Foster, F. Képès, V. Lefort, J.F. Miller, M. Radman, J.J. Ramsden, Guidelines: from artificial evolution to computational evolution. Nat. Rev. Genet. 7(9), 729–735 (2006)

    Article  Google Scholar 

  17. J.F. Miller, K. Downing, Evolution in materio: looking beyond the silicon box, in Proceedings of the NASA/DoD Conference on Evolvable Hardware, 2002 (IEEE, 2002) pp. 167–176

    Google Scholar 

  18. A. Klarbring, B. Torstenfelt, Dynamical systems and topology optimization. Struct. Multidiscip. Optim. 42(2), 179–192 (2010)

    Article  MathSciNet  Google Scholar 

  19. A.A. Safonov, Mathematical modeling for impregnation of reinforcing filler of fiberglasses during vacuum infusion. J. Mach. Manuf. Reliab. 39(6), 568–574 (2010)

    Article  Google Scholar 

  20. A. Safonov, J. Jones. Physarum computing and topology optimisation. Int. J. Parallel Emerg. Distrib. Syst. 32(5), 448–465 (2017)

    Article  Google Scholar 

  21. A. Babloyantz, J.A. Sepulchre, Front propagation into unstable media: a computational tool, in Nonlinear Wave Processes in Excitable Media (Springer, 1991), pp. 343–350

    Chapter  Google Scholar 

  22. O. Steinbock, Á. Tóth, K. Showalter, Navigating complex labyrinths: optimal paths from chemical waves. Science 267(5199), 868 (1995)

    Article  Google Scholar 

  23. N.G. Rambidi, Biologically inspired information processing technologies: reaction-diffusion paradigm. Int. J. Unconv. Comput. 1(2), 101–121 (2005)

    Google Scholar 

  24. K. Agladze, N. Magome, R. Aliev, T. Yamaguchi, K. Yoshikawa, Finding the optimal path with the aid of chemical wave. Phys. D Nonlinear Phenom. 106(3–4), 247–254 (1997)

    Article  Google Scholar 

  25. A. Adamatzky, B. de Lacy Costello, Reaction-diffusion path planning in a hybrid chemical and cellular-automaton processor. Chaos, Solitons & Fractals 16(5), 727–736 (2003)

    Article  Google Scholar 

  26. I. Lagzi, S. Soh, P.J. Wesson, K.P. Browne, B.A. Grzybowski, Maze solving by chemotactic droplets. J. Am. Chem. Soci. 132(4), 1198–1199 (2010)

    Article  Google Scholar 

  27. S.L. Stephenson, H. Stempen, I. Hall, Myxomycetes: A Bandbook of Slime Molds (Timber Press Portland, Oregon, 1994)

    Google Scholar 

  28. M.J. Carlile, Nutrition and chemotaxis in the myxomycete physarum polycephalum: the effect of carbohydrates on the plasmodium. J. Gen. Microbiol. 63(2), 221–226 (1970)

    Article  Google Scholar 

  29. A.C.H. Durham, E.B. Ridgway, Control of chemotaxis in Physarum polycephalum. J. Cell Biol. 69, 218–223 (1976)

    Article  Google Scholar 

  30. U. Kishimoto, Rhythmicity in the protoplasmic streaming of a slime mould, Physarum polycephalum. J. Gen. Physiol. 41(6), 1223–1244 (1958)

    Article  Google Scholar 

  31. T. Nakagaki, S. Uemura, Y. Kakiuchi, T. Ueda, Action spectrum for sporulation and photoavoidance in the plasmodium of Physarum polycephalum, as modified differentially by temperature and starvation. Photochem. Photobiol. 64(5), 859–862 (1996)

    Article  Google Scholar 

  32. T. Nakagaki, H. Yamada, T. Ueda, Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys. Chem. 84(3), 195–204 (2000)

    Article  Google Scholar 

  33. A. Takamatsu, T. Fujii, I. Endo, Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)

    Article  Google Scholar 

  34. T. Ueda, K. Terayama, K. Kurihara, Y. Kobatake, Threshold phenomena in chemoreception and taxis in slime mold Physarum polycephalum. J. Gen. physiol. 65(2), 223–34 (1975)

    Article  Google Scholar 

  35. A. Adamatzky, B. de Lacy Costello, T. Shirakawa, Universal computation with limited resources: Belousov-zhabotinsky and Physarum computers. Int. J. Bifurc. Chaos 18(8), 2373–2389 (2008)

    Article  MathSciNet  Google Scholar 

  36. T. Nakagaki, R. Kobayashi, Y. Nishiura, T. Ueda, Obtaining multiple separate food sources: behavioural intelligence in the Physarum Physarum plasmodium. R. Soc. Proc. Biol. Sci. 271(1554), 2305–2310 (2004)

    Google Scholar 

  37. T. Shirakawa, Y.-P. Gunji, Computation of Voronoi diagram and collision-free path using the Plasmodium of Physarum polycephalum. Int. J. Unconv. Comput. 6(2), 79–88 (2010)

    Google Scholar 

  38. T. Shirakawa, A. Adamatzky, Y.-P. Gunji, Y. Miyake, On simultaneous construction of voronoi diagram and delaunay triangulation by Physarum polycephalum. Int. J. Bifurc. Chaos 19(9), 3109–3117 (2009)

    Article  Google Scholar 

  39. A. Adamatzky, Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwissenschaften 94(12), 975–980 (2007)

    Article  Google Scholar 

  40. A. Adamatzky, If BZ medium did spanning trees these would be the same trees as Physarum built. Phys. Lett. A 373(10), 952–956 (2009)

    Article  Google Scholar 

  41. A. Adamatzky, Developing proximity graphs by Physarum polycephalum: does the plasmodium follow the toussaint hierarchy. Parallel Process. Lett. 19, 105–127 (2008)

    Article  MathSciNet  Google Scholar 

  42. A. Adamatzky, Slime mould computes planar shapes. Int. J. Bio-Inspired Comput. 4(3), 149–154 (2012)

    Article  Google Scholar 

  43. A. Adamatzky, Routing Physarum with repellents. Eur. Phys. J. E Soft Matter Biol. Phys. 31(4), 403–410 (2010)

    Article  MathSciNet  Google Scholar 

  44. A. Adamatzky, Manipulating substances with Physarum polycephalum. Mater. Sci. Eng. C 38(8), 1211–1220 (2010)

    Article  Google Scholar 

  45. A. Adamatzky, Steering plasmodium with light: dynamical programming of Physarum machine (2009), arXiv:0908.0850

  46. M. Aono, M. Hara, Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability, in 6th International Conference, UC 2007, LNCS, Kingston, Canada, 13–17 Aug 2007, vol. 4618 (Springer, 2007), pp. 41–54

    Google Scholar 

  47. M. Aono, M. Hara, Spontaneous deadlock breaking on amoeba-based neurocomputer. BioSystems 91(1), 83–93 (2008)

    Article  Google Scholar 

  48. K. Ozasa, M. Aono, M. Maeda, M. Hara, Simulation of neurocomputing based on the photophobic reactions of Euglena with optical feedback stimulation. BioSystems 100(2), 101–107 (2010)

    Article  Google Scholar 

  49. A. Adamatzky, Simulating strange attraction of acellular slime mould Physarum polycephaum to herbal tablets. Math. Comput. Model. (2011)

    Google Scholar 

  50. M. Conrad, Information processing in molecular systems. Curr. Mod. Biol. (now BioSystems) 5, 1–14 (1972)

    Google Scholar 

  51. N. Margolus, Physics-like models of computation. Phys. D 10, 81–95 (1982)

    Article  MathSciNet  Google Scholar 

  52. M. Roselló-Merino, M. Bechmann, A. Sebald, S. Stepney, Classical computing in nuclear magnetic resonance. Int. J. Unconv. Comput. 6(3–4), 163–195 (2010)

    Google Scholar 

  53. S. Tsuda, M. Aono, Y.-P. Gunji, Robust and emergent Physarum logical-computing. BioSystems 73, 45–55 (2004)

    Article  Google Scholar 

  54. A. Adamatzky, Slime mould logical gates: exploring ballistic approach (2010), arXiv:1005.2301

  55. J. Jones, A. Adamatzky, Towards Physarum binary adders. Biosystems 101(1), 51–58 (2010)

    Article  Google Scholar 

  56. R. Mayne, A. Adamatzky, Slime mould foraging behaviour as optically coupled logical operations. Int. J. Gen. Syst. 44(3), 305–313 (2015)

    Article  MathSciNet  Google Scholar 

  57. A. Adamatzky, T. Schubert, Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  58. J.G.H. Whiting, B.P.J. de Lacy Costello, A. Adamatzky, Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Article  Google Scholar 

  59. J. Jones, J.G.H. Whiting, A. Adamatzky, Quantitative transformation for implementation of adder circuits in physical systems. Biosystems 134, 16–23 (2015)

    Article  Google Scholar 

  60. D.P. Bebber, J. Hynes, P.R. Darrah, L. Boddy, M.D. Fricker, Biological solutions to transport network design. Proc. R. Soc. B Biol. Sci. 274(1623), 2307–2315 (2007)

    Article  Google Scholar 

  61. M. Fricker, L. Boddy, T. Nakagaki, D. Bebber, Adaptive biological networks. Adapt. Netw. 51–70 (2009)

    Google Scholar 

  62. T. Latty, K. Ramsch, K. Ito, T. Nakagaki, D.J.T. Sumpter, M. Middendorf, M. Beekman, Structure and formation of ant transportation networks. J. R. Soc. Interface 8(62), 1298–1306 (2011)

    Article  Google Scholar 

  63. D. Helbing, P. Molnar, I.J. Farkas, K. Bolay, Self-organizing pedestrian movement. Env. Plan. B 28(3), 361–384 (2001)

    Article  Google Scholar 

  64. A. Adamatzky, J. Jones, Road planning with slime mould: if Physarum built motorways it would route M6/M74 through newcastle. Int. J. Bifurc. Chaos 20(10), 3065–3084 (2010)

    Article  MathSciNet  Google Scholar 

  65. A. Adamatzky, S. Akl, R. Alonso-Sanz, W. Van Dessel, Z. Ibrahim, A. Ilachinski, J. Jones, A. Kayem, G.J. Martínez, P. De Oliveira et al., Are motorways rational from slime mould’s point of view? Int. J. Parallel Emerg. Distrib. Syst. 28(3), 230–248 (2013)

    Article  Google Scholar 

  66. E. Strano, A. Adamatzky, J. Jones, Physarum itinerae: evolution of roman roads with slime mould. Int. J. Nanotechnol. Mol. Comput. (IJNMC) 3(2), 31–55 (2011)

    Article  Google Scholar 

  67. A. Tero, S. Takagi, T. Saigusa, K. Ito, D.P. Bebber, M.D. Fricker, K. Yumiki, R. Kobayashi, T. Nakagaki, Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MathSciNet  Google Scholar 

  68. J. Jones, The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Int. J. Unconv. Comput. 6(2), 125–144 (2010)

    Google Scholar 

  69. J. Jones, From Pattern Formation to Material Computation: multi-agent Modelling of Physarum Polycephalum, vol. 15 (Springer, 2015)

    Chapter  Google Scholar 

  70. J. Jones, Characteristics of pattern formation and evolution in approximations of Physarum transport networks. Artificial Life 16(2), 127–153 (2010)

    Article  Google Scholar 

  71. H. Meinhardt, A. Gierer, Pattern formation by local self-activation and lateral inhibition. Bioessays 22(8), 753–760 (2000)

    Article  Google Scholar 

  72. J. Jones, Influences on the formation and evolution of physarum polycephalum inspired emergent transport networks. Nat. Comput. 10(4), 1345–1369 (2011)

    Article  MathSciNet  Google Scholar 

  73. J. Jones, Mechanisms inducing parallel computation in a model of physarum polycephalum transport networks. Parallel Process. Lett. 25(01), 1540004 (2015)

    Article  MathSciNet  Google Scholar 

  74. W. Baumgarten, J. Jones, M.J.B. Hauser, Network coarsening dynamics in a plasmodial slime mould: modelling and experiments. Acta Phys. Pol. B 46(6) (2015). In–press

    Article  Google Scholar 

  75. S. Stepney, The neglected pillar of material computation. Phys. D Nonlinear Phenom. 237(9), 1157–1164 (2008)

    Article  MathSciNet  Google Scholar 

  76. M. Aono, Y. Hirata, M. Hara, K. Aihara, Amoeba-based chaotic neurocomputing: combinatorial optimization by coupled biological oscillators. New Gen. Comput. 27(2), 129–157 (2009)

    Article  Google Scholar 

  77. J. Jones, R. Mayne, A. Adamatzky, Representation of shape mediated by environmental stimuli in physarum polycephalum and a multi-agent model. Int. J. Parallel Emerg. Distrib. Syst. 0(0), 1–19, 0

    Google Scholar 

  78. J. Jones, A. Adamatzky, Computation of the travelling salesman problem by a shrinking blob. Nat. Comput. 13(1), 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  79. J. Jones, A. Adamatzky, Material approximation of data smoothing and spline curves inspired by slime mould. Bioinspiration Biomim. 9(3), 036016 (2014)

    Article  Google Scholar 

  80. J. Jones, Embodied approximation of the density classification problem via morphological adaptation. Int. J. Unconv. Comput. 12(2–3), 221–240 (2016)

    Google Scholar 

  81. J. Jones, A morphological adaptation approach to path planning inspired by slime mould. Int. J. Gen. Syst. 44(3), 279–291 (2015)

    Article  MathSciNet  Google Scholar 

  82. T. Nakagaki, H. Yamada, A. Toth, Intelligence: maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  83. T. Nakagaki, H. Yamada, A. Toth, Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92(1–2), 47–52 (2001)

    Article  Google Scholar 

  84. V.J. Lumelsky, A comparative study on the path length performance of maze-searching and robot motion planning algorithms. IEEE Trans. Robot. Autom. 7(1), 57–66 (1991)

    Article  Google Scholar 

  85. A. Tero, R. Kobayashi, T. Nakagaki, Physarum solver: a biologically inspired method of road-network navigation. Phys. A: Stat. Mech. Its Appl. 363(1), 115–119 (2006)

    Article  Google Scholar 

  86. Y.-P. Gunji, T. Shirakawa, T. Niizato, M. Yamachiyo, I. Tani, An adaptive and robust biological network based on the vacant-particle transportation model. J. Theoret. Biol. 272(1), 187–200 (2011)

    Article  Google Scholar 

  87. M.P. Bendsoe, O. Sigmund, Topology Optimization: Theory, Methods, and Applications (Springer Science & Business Media, 2013)

    Google Scholar 

  88. B. Hassani, E. Hinton, Homogenization and Structural Topology Optimization: Theory, Practice and Software (Springer Science & Business Media, 2012)

    Google Scholar 

  89. X. Huang, M. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (Wiley, 2010)

    Book  Google Scholar 

  90. M. Bendsoe, E. Lund, N. Olhoff, O. Sigmund, Topology optimization-broadening the areas of application. Control Cybern. 34(1), 7 (2005)

    MathSciNet  MATH  Google Scholar 

  91. A. Bejan, Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40(4), 799–816 (1997)

    Article  Google Scholar 

  92. T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41(1), 77–107 (2003)

    Article  MathSciNet  Google Scholar 

  93. J. Stegmann, E. Lund, Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62(14), 2009–2027 (2005)

    Article  Google Scholar 

  94. H. Men, K.Y.K. Lee, R.M. Freund, J. Peraire, S.G. Johnson, Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt. Express 22(19), 22632–22648 (2014)

    Article  Google Scholar 

  95. A. Safonov, A. Adamatzky, Computing via material topology optimisation. Appl. Math. Comput. 318, 109–120 (2018)

    Article  MathSciNet  Google Scholar 

  96. M. Zhou, G.I.N. Rozvany, The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89(1–3), 309–336 (1991)

    Article  Google Scholar 

  97. R.B. Wilson, A Simplicial Method for Convex Programming (Harvard University, Cambridge, MA, 1963)

    Google Scholar 

  98. K. Svanberg, The method of moving asymptotesa new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  99. A. Nagurney, D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, vol. 2 (Springer Science & Business Media, 2012)

    Google Scholar 

  100. A. Klarbring, B. Torstenfelt, Dynamical systems, SIMP, bone remodeling and time dependent loads. Struct. Multidiscip. Optim. 45(3), 359–366 (2012)

    Article  MathSciNet  Google Scholar 

  101. T.P. Harrigan, J.J. Hamilton, Bone remodeling and structural optimization. J. Biomech. 27(3), 323–328 (1994)

    Article  Google Scholar 

  102. A. Gersborg-Hansen, M.P. Bendsøe, O. Sigmund, Topology optimization of heat conduction problems using the finite volume method. Struct. Multidiscip. Optim. 31(4), 251–259 (2006)

    Article  MathSciNet  Google Scholar 

  103. M.G. Mullender, R. Huiskes, H. Weinans, A physiological approach to the simulation of bone remodeling as a self-organizational control process. J. Biomech. 27(11), 1389–1394 (1994)

    Article  Google Scholar 

  104. W.M. Payten, B. Ben-Nissan, D.J. Mercert, Optimal topology design using a global self-organisational approach. Int. J. Solids Struct. 35(3), 219–237 (1998)

    Article  MathSciNet  Google Scholar 

  105. Abaqus Inc. Abaqus Analysis User Manual, Version 6.14, 2014

    Google Scholar 

  106. A.A. Safonov, B.N. Fedulov, Universal Optimization Software—UOPTI, 2015

    Google Scholar 

  107. A.A. Safonov, Youtube Channel of Alexander Safonov, 2016

    Google Scholar 

Download references

Acknowledgements

This research was supported by the EU research project “Physarum Chip: Growing Computers from Slime Mould” (FP7 ICT Ref 316366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Jones .

Editor information

Editors and Affiliations

Supplementary Materials

Supplementary Materials

1.1 Topology Optimisation Approach

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, J., Safonov, A. (2018). Slime Mould Inspired Models for Path Planning: Collective and Structural Approaches. In: Adamatzky, A. (eds) Shortest Path Solvers. From Software to Wetware. Emergence, Complexity and Computation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-77510-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77510-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77509-8

  • Online ISBN: 978-3-319-77510-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics