Skip to main content

A Parallel Algorithm for the Constrained Shortest Path Problem on Lattice Graphs

  • Chapter
  • First Online:
Shortest Path Solvers. From Software to Wetware

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 32))

Abstract

The edges of a graph are assigned weights and passage times which are assumed to be positive integers. We present a parallel algorithm for finding the shortest path whose total weight is smaller than a pre-determined value. In each step the processing elements are not analyzing the entire graph. Instead they are focusing on a subset of vertices called active vertices. The set of active vertices at time t is related to the boundary of the ball \(B_t\) of radius t in the first passage percolation metric. Although it is believed that the number of active vertices is an order of magnitude smaller than the size of the graph, we prove that this need not be the case with an example of a graph for which the active vertices form a large fractal. We analyze an OpenCL implementation of the algorithm on GPU for cubes in \(\mathbb Z^d\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Amir, I. Corwin, J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Comm. Pure Appl. Math. 64, 466–537 (2011)

    Article  MathSciNet  Google Scholar 

  2. S. Armstrong, H. Tran, Y. Yu, Stochastic homogenization of a nonconvex Hamilton–Jacobi equation. Calc. Var. Partial Differential Equations, 54, 1507–1524 (2015). (Submitted) arXiv:1311.2029

    Article  MathSciNet  Google Scholar 

  3. M. Benaim, R. Rossignol, Exponential concentration for first passage percolation through modified poincaré inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 44(3), 544–573 (2008)

    Article  MathSciNet  Google Scholar 

  4. I. Benjamini, G. Kalai, O. Schramm, First passage percolation has sublinear distance variance. Ann. Probab. 31(4), 1970–1978 (2003)

    Article  MathSciNet  Google Scholar 

  5. N. Boland, J. Dethridge, I. Dumitrescu, Accelerated label setting algorithms for the elementary resource constrained shortest path problem. Oper. Res. Lett. 34, 58–68 (2006)

    Article  MathSciNet  Google Scholar 

  6. S. Chatterjee, P.S. Dey, Central limit theorem for first-passage percolation time across thin cylinders. Probab. Theory Relat Fields 156(3), 613–663 (2013)

    Article  MathSciNet  Google Scholar 

  7. J.T. Cox, R. Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9(4), 583–603 (1981)

    Article  MathSciNet  Google Scholar 

  8. M. Damron, M. Hochman, Examples of nonpolygonal limit shapes in i.i.d. first-passage percolation and infinite coexistence in spatial growth models. Ann. Appl. Probab. 23(3), 1074–1085 (2013)

    Article  MathSciNet  Google Scholar 

  9. M. Desrochers, J. Desrosiers, M. Solomon, A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

    Article  MathSciNet  Google Scholar 

  10. J. Hammersley, D. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. in Bernoulli-Bayes-Laplace Anniversary Volume1965

    Google Scholar 

  11. S. Irnich, G. Desaulniers, Shortest path problems with resource constraints. in Column Generation, ed. by G. Desaulniers, J. Desrosiers, M. M. Solomon. GERAD 25th Anniversary Series (Springer, 2005), pp. 33–65

    Google Scholar 

  12. E. Köhler, R.H. Möhring, H. Schilling, Acceleration of shortest path and constrained shortest path computation. Lect. Notes Comput. Sci. 3503, 126–138 (2005)

    Article  Google Scholar 

  13. E. Kosygina, F. Rezakhanlou, S.R.S. Varadhan, Stochastic homogenization of Hamilton-Jacobi-Bellman equations. Comm. Pure Appl. Math. 59(10), 1489–1521 (2006)

    Article  MathSciNet  Google Scholar 

  14. E. Kosygina, F. Yilmaz, O. Zeitouni, Nonconvex homogenization of a class of one-dimensional stochastic viscous Hamilton-Jacobi equations, in preparation (2017)

    Google Scholar 

  15. J. Krug H. Spohn, Kinetic roughening of growing surfaces. Solids Far Equilib. 412–525 (1991)

    Google Scholar 

  16. X.-Y. Li, P.-J. Wan, Y. Wang, O. Frieder, Constrained shortest paths in wireless networks, in IEEE MilCom (2001), pp. 884–893

    Google Scholar 

  17. L. Lozano, A.L. Medaglia, On an exact method for the constrained shortest path problem. Comput. Oper. Res. 40(1), 378–384 (2013)

    Article  Google Scholar 

  18. I. Matic, Parallel algorithm for constrained shortest path problem in C++/OpenCL. https://github.com/maticivan/parallel_constrained_shortest_path

  19. I. Matic, J. Nolen, A sublinear variance bound for solutions of a random Hamilton-Jacobi equation. J. Stat. Phys. 149, 342–361 (2012)

    Article  MathSciNet  Google Scholar 

  20. K. Mehlhorn, M. Ziegelmann, Resource constrained shortest paths. Lect. Notes Comput. Sci. 1879, 326–337 (2000)

    Article  MathSciNet  Google Scholar 

  21. S. Misra, N.E. Majd, H. Huang, Approximation algorithms for constrained relay node placement in energy harvesting wireless sensor networks. IEEE Trans. Comput. 63(12), 2933–2947 (2014)

    Article  MathSciNet  Google Scholar 

  22. R. Muhandiramge, N. Boland, Simultaneous solution of lagrangean dual problems interleaved with preprocessing for the weight constrained shortest path problem. Networks 53, 358–381 (2009)

    Article  MathSciNet  Google Scholar 

  23. C.M. Newman, M.S.T. Piza, Divergence of shape fluctuations in two dimensions. Ann. Probab. 23(3), 977–1005 (1995)

    Article  MathSciNet  Google Scholar 

  24. F. Rezakhanlou, Central limit theorem for stochastic Hamilton-Jacobi equations. Commun. Math. Phys. 211, 413–438 (2000)

    Article  MathSciNet  Google Scholar 

  25. T. Sasamoto, H. Spohn, One-dimensional kardar-parisi-zhang equation: An exact solution and its universality. Phys. Rev. Lett. 104 (2010)

    Google Scholar 

  26. P.E. Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applications. Asymptot. Anal. 20(1), 1–11 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was supported by PSC-CUNY grants \(\#68387-00 46\), \(\#69723-00 47\) and Eugene M. Lang Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Matic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matic, I. (2018). A Parallel Algorithm for the Constrained Shortest Path Problem on Lattice Graphs. In: Adamatzky, A. (eds) Shortest Path Solvers. From Software to Wetware. Emergence, Complexity and Computation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-77510-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77510-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77509-8

  • Online ISBN: 978-3-319-77510-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics