Skip to main content

Harnessing Reversible Oxidative Addition: Application of Diiodinated Aromatic Compounds in Aryliodination

  • Chapter
  • First Online:
Book cover Stereoselective Heterocycle Synthesis via Alkene Difunctionalization

Part of the book series: Springer Theses ((Springer Theses))

  • 397 Accesses

Abstract

The previous chapters have highlighted the positive impact that Pd-catalyzed cross-coupling reactions have had on the chemical sciences. The use of substrates that are pre-functionalized with a carbon–halogen bond allows for a high degree of regiocontrol since the Pd(0) catalyst has a high propensity to undergo oxidative addition at this site. However, these reactions become less predictable once more than one carbon–halogen bond is present in the substrate.

Portions of this chapter have appeared in print. See: Refs. [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For reviews on this topic, see Refs. [3,4,5].

  2. 2.

    The use of pseudohalides (i.e. OTf or OTs) can also be used to impart selectivity.

  3. 3.

    Reference [6].

  4. 4.

    Reference [7].

  5. 5.

    Reference [8].

  6. 6.

    Reference [9].

  7. 7.

    Reference [10].

  8. 8.

    Reference [11].

  9. 9.

    References [12, 13].

  10. 10.

    Reference [14].

  11. 11.

    Reference [15].

  12. 12.

    Reference [16].

  13. 13.

    Reference [17].

  14. 14.

    Reference [18].

  15. 15.

    Reference [19].

  16. 16.

    Reference [20].

  17. 17.

    Reference [21].

  18. 18.

    Reference [22].

  19. 19.

    Reference [26].

  20. 20.

    Reference [27].

  21. 21.

    Reference [28].

  22. 22.

    Complex 4.68 could also be generated in 85% by treatment of 4.65 with BzCl in pentane at RT for 1 h.

  23. 23.

    Reference [29].

  24. 24.

    Reference [32].

  25. 25.

    References [33,34,35].

  26. 26.

    Reference [36].

  27. 27.

    Reference [37].

  28. 28.

    Reference [38].

  29. 29.

    Reference [39].

References

  1. Petrone, D.A., Le, C.M., Newman, S.G., Lautens, M.: Pd-Catalyzed carboiodination: early developments to recent advancements (Chap. 7). In: Colacot, T. (ed.) New Trends in Cross-Coupling. The Royal Society of Chemistry, Cambridge (2015)

    Google Scholar 

  2. Petrone, D.A., Lischka, M., Lautens, M.: Angew. Chem. Int. Ed. 10652, 10635 (2013)

    Article  Google Scholar 

  3. Schröter, S., Stock, C., Bach, T.: Tetrahedron 61, 2245 (2005)

    Article  Google Scholar 

  4. Wang, J.-R., Manabe, K.: Synthesis 1405 (2009)

    Google Scholar 

  5. Fairlamb, I.J.S.: Chem. Soc. Rev. 36, 1036 (2007)

    Article  CAS  Google Scholar 

  6. Minato, A., Suzuki, K., Tamao, K.: J. Am. Chem. Soc. 109, 1257 (1987)

    Article  CAS  Google Scholar 

  7. Evans, D.A., Starr, J.T.: Angew. Chem. Int. Ed. 41, 1787 (2002)

    Article  CAS  Google Scholar 

  8. Roush, W.R., Moriarty, K.J., Brown, B.B.: Tetrahedron Lett. 31, 6509 (1990)

    Article  CAS  Google Scholar 

  9. Bellina, F., Carpita, A., de Santis, M.D., Rossi, R.: Tetrahedron Lett. 35, 6913 (1994)

    Article  CAS  Google Scholar 

  10. Ratoveloamanana, V., Linstrumelle, G.: Tetrahedron Lett. 26, 2575 (1985)

    Article  Google Scholar 

  11. Handy, S.T., Zhang, Y.: Chem. Commun. 299 (2006)

    Google Scholar 

  12. Legault, C.Y., Garcia, Y., Merlic, C.A., Houk, K.N.: J. Am. Chem. Soc. 129, 12664 (2007)

    Article  CAS  Google Scholar 

  13. Garcia, Y., Schoenebeck, F., Legault, C.Y., Merlic, C.A., Houk, K.N.: J. Am. Chem. Soc. 131, 6632 (2009)

    Article  CAS  Google Scholar 

  14. Kada, R., Knoppova, B., Kováč, P.: Collect. Czech. Chem. Commun. 49, 984 (1984)

    Article  CAS  Google Scholar 

  15. Bach, T., Krüger, L.: Tetrahedron Lett. 39, 1729 (1998)

    Article  CAS  Google Scholar 

  16. Conreaux, D., Bossharth, E., Monteiro, N., Desbordes, P., Vors, J., Balme, G.: Org. Lett. 9, 271 (2007)

    Article  CAS  Google Scholar 

  17. Reyes, M.J., Castillo, R., Izquierdo, M.L., Alvarez-Builla, J.: Tetrahedron Lett. 47, 6457 (2006)

    Article  CAS  Google Scholar 

  18. Fahey, D.R.: J. Am. Chem. Soc. 92, 402 (1970)

    Article  CAS  Google Scholar 

  19. Just, G., Singh, R.J.: Org Chem. 54, 4453 (1989)

    Article  Google Scholar 

  20. Hayashi, T., Niizuma, S., Kamikawa, T., Suzuki, N., Uozumi, Y.: J. Am. Chem. Soc. 117, 9101 (1995)

    Article  CAS  Google Scholar 

  21. Lautens, M., Fang, Y.-Q.: Org. Lett. 5, 3679 (2003)

    Article  CAS  Google Scholar 

  22. Saget, T., Perez, D., Cramer, N.: Org. Lett. 15, 1354 (2013)

    Article  CAS  Google Scholar 

  23. Roy, A.H., Hartwig, J.F.: J. Am. Chem. Soc. 123, 1232 (2001)

    Article  CAS  Google Scholar 

  24. Roy, A.H., Hartwig, J.F.: Organometallics 23, 1533 (2004)

    Article  CAS  Google Scholar 

  25. Roy, A.H., Hartwig, J.F.: J. Am. Chem. Soc. 125, 13944 (2003)

    Article  CAS  Google Scholar 

  26. Newman, S.G., Lautens, M.: J. Am. Chem. Soc. 132, 11416 (2010)

    Article  CAS  Google Scholar 

  27. Nareddy, R., Mantilli, L., Guénée, L., Mazet, C.: Angew. Chem. Int. Ed. 51, 3826 (2013)

    Article  Google Scholar 

  28. Quesnel, J.S., Arndtsen, B.A.: J. Am. Chem. Soc. 135, 16841 (2013)

    Article  CAS  Google Scholar 

  29. Quesnel, J.S., Kayser, L.V., Fabrikant, A., Arndtsen, B.A.: Chem. Eur. J. 21, 9550 (2015)

    Article  CAS  Google Scholar 

  30. Fahey, D.R.: J. Organomet. Chem. 27, 283 (1971)

    Article  CAS  Google Scholar 

  31. Stambuli, J.P., Bühl, M., Hartwig, J.F.: J. Am. Chem. Soc. 124, 9346 (2002)

    Article  CAS  Google Scholar 

  32. Lu, Z., Hu, C., Guo, J., Li, J., Cui, Y., Jia, Y.: Org. Lett. 12, 480 (2010)

    Article  CAS  Google Scholar 

  33. Johansson Seechurn, C.C.C., Parisel, S.L., Colacot, T.J.: J. Org. Chem 76, 7918 (2011)

    Article  CAS  Google Scholar 

  34. Li, H., Johansson Seechurn, C.C.C., Colacot, T.J.: ACS Catal. 2, 1147 (2012)

    Article  CAS  Google Scholar 

  35. Pu, X., Li, H., Colacot, T.J.: J. Org. Chem. 78, 568 (2013)

    Article  CAS  Google Scholar 

  36. Edgar, K.J., Falling, S.N.: J. Org. Chem. 55, 5287 (1990)

    Article  CAS  Google Scholar 

  37. Flydare, J.A., et al.: 1-(chloromethyl)-2,3-hihydro-1H-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment. WO Patent 23355, A1 (2015)

    Google Scholar 

  38. Lulinski, P., Kryska, A., Sasnowski, M., Skulski, L.: Synthesis 3, 441 (2004)

    Google Scholar 

  39. Larock, R.C., Harrison, L.W.: J. Am. Chem. Soc. 106, 4218 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Petrone .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrone, D.A. (2018). Harnessing Reversible Oxidative Addition: Application of Diiodinated Aromatic Compounds in Aryliodination. In: Stereoselective Heterocycle Synthesis via Alkene Difunctionalization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77507-4_4

Download citation

Publish with us

Policies and ethics