Skip to main content

Multiscale Modeling of 2D Material MoS2 from Molecular Dynamics to Continuum Mechanics

  • Chapter

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 90))

Abstract

Research on two dimensional (2D) materials, such as Graphene and Molybdenum disulfide (MoS2), now involves thousands of researchers worldwide, implementing cutting edge technology to study them. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. This work introduces atomistic simulation methodologies, based on interatomic potential, as a tool to unveil the mechanical and thermal properties at nanoscale of MoS2, a material that has attracted most research interests among all 2D materials. Young’s modulus, Poison’s ratio, heat conductivity and heat capacity at atomic scale are studied. These findings lend compelling insights into the atomistic mechanism of MoS2. Then, based on these useful information, we perform concurrent multiscale modeling of MoS2 from molecular dynamics simulation in atomic region to finite element analysis in continuum region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208 (1957)

    Article  Google Scholar 

  2. Alder, B.J., Wainwright, T.E.: Studies in molecular dnamics. I. General method. J. Chem. Phys. 31(2), 459–466 (1959)

    Article  MathSciNet  Google Scholar 

  3. Boresi, A.P., Chong, K.P., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley (2011)

    Google Scholar 

  4. Chen, Y., Lee, J.D., Eskandarin, A.: Meshless Methods in Solid Mechanics. Springer (2006)

    Google Scholar 

  5. de Groot, S.R., Suttorp, L.G.: Foundations of Electrodynamics. North-Holland Pub, Co (1972)

    Google Scholar 

  6. Eringen, A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer (1999)

    Google Scholar 

  7. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  8. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  Google Scholar 

  9. Jiang, J.P.: Molecular dynamics simulations of single-layer molybdenum disulfide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114(6), 064307 (2013)

    Article  Google Scholar 

  10. Laudau, L.D.: Theory of phase changes. I. Physikalische Z. Sowjetunion 11, 26–47 (1937)

    Google Scholar 

  11. Lee, J.D., Li, J., Zhang, Z., Wang, L.: Sequential and concurrent multiscale modeling of multiphysics: from atoms to continuum. In: Meguid, S.A., Weng, G. J. (eds.) Micromechanics and Nanomechanics of Composite Solids. Springer (2017)

    Google Scholar 

  12. Li, J., Lee, J.D.: Reformulation of the Nose-Hoover thermostat for heat conduction simulation at nanoscale. Acta Mech. 225, 1223–1233 (2014)

    Article  Google Scholar 

  13. Li, X., Zhu, H.: Two-dimensional MoS2: properties, preparation, and applications. J. Mater. 1, 33–44 (2015)

    Google Scholar 

  14. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  15. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 53, 255–268 (1984)

    Article  Google Scholar 

  16. Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)

    Article  Google Scholar 

  17. Stewart, J., Spearot, D.: Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Model. Simul. Mater. Sci. Eng. 21(4), 045003(2013)

    Article  Google Scholar 

  18. Stillinger, F.H., Rahman, A.: Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545–1557 (1974)

    Article  Google Scholar 

  19. Subramaniyan, A.K., Sun, C.T.: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45(14–15), 4340–4346 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Robert, K.P., Li, J., Lee, J.D. (2018). Multiscale Modeling of 2D Material MoS2 from Molecular Dynamics to Continuum Mechanics. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics