Skip to main content

Westergaard’s Solution Applied to Carbonate Reservoirs

  • Chapter
  • First Online:
  • 554 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A tectonic fracture is associated to stresses concentration. Carbonate rocks usually have a history involving mechanical, thermal and chemical actions during millions of years. Fracture mechanics have been used successfully to predict fracture initiation that have regarding structures design using metallic materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Authorized by field manager for academic objectives.

  2. 2.

    Report developed by micropaleontology personal.

  3. 3.

    Report developed by specialized personal of petrography.

  4. 4.

    Report developed by specialized petrophysicists.

  5. 5.

    Report developed by specialized personal in X-ray diffraction and combinatorial catalysis.

  6. 6.

    Numerical data were authorized by field manager for academic objectives.

  7. 7.

    Data determined by specialized persona in rock mechanical properties. Class notes: Geomechanics for Petroleum Engineers.

  8. 8.

    Data determined by specialized personal in rocks mechanical properties. Class notes: Geomechanics for Petroleum Engineer.

References

  • Al-Shayea, N. A. (2004). Effects of testing methods and conditions on the elastic properties of limestone rock. Engineering Geology, 74, 139–156.

    Article  Google Scholar 

  • Biot, M. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155.

    Article  Google Scholar 

  • Bishop, A. W. (1954). The use of pore-pressure coefficients in practice. Géotechnique, 148–152.

    Article  Google Scholar 

  • Chan, A. W., & Zoback, M. D. (2002). Deformation Analysis in Reservoir Space (DARS): A simple formalism for prediction of reservoir deformation with depletion. Presented at the SPE/ISRM Rock Mechanics Conference, Irving, Texas, 20–23 October.

    Google Scholar 

  • Chopra, S., & Castagna, J. P. (2014). In AVO. Investigations in geophysics N\(^{\circ }\) 16. Tulsa, Oklahoma: Society of Exploration Geophysicsts (pp. 3–5).

    Google Scholar 

  • Comisión Nacional de Hidrocarburos (CNH). (2013). Dictamen Técnico del Proyecto de Explotación Antonio J. Bermúdez (Modificación Sustantiva). Mayo (pp. 2, 44).

    Google Scholar 

  • De Vedia, L. A. (1986). Mecánica de Fractura. Proyecto Multinacional de Investigación y Desarrollo de Materiales, OEA, Argentina (pp. 25–68).

    Google Scholar 

  • Fong, A. J. L., Villavicencio, A. E., Pérez, H. R., et al. (2005). Proyecto Integral Complejo Antonio J. Bermúdez: Retos y Oportunidades. Presentado en el cuarto Exitep, CIPM celebrado en Veracruz, México, 20–23 de febrero.

    Google Scholar 

  • Fossen, H. (2010). Structural geology (1st ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • García, M. (2010). Notas de clase: Geomecánica Petrolera. México: Posgrado en Ingeniería Petrolera. UNAM. D.F.

    Google Scholar 

  • Geertsma, J. (1957). The effect of fluid pressure decline on volumetric changes of porous rocks. Petroleum Trans., AIME, 210, 331–340. (Original paper presented at AIME Petroleum Branch Fall meeting in Los Angeles, 14–17 October, 1956).

    Google Scholar 

  • Guerrero, A. R., & Mandujano, S. H. (2014). Estrategias de Incremento de la Producción de Aceite en el Complejo Antonio J. Bermúdez: próximo reto después de lograr el mantenimiento de la producción. Ingeniería Petrolera (Vol. 54. No. 4, pp. 216–232).

    Google Scholar 

  • Hardy, R., & Tucker, M. (1988). X-ray powder diffraction of sediments. In M. Tucker (Ed.), Techniques in sedimentology (pp. 191–228). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Jaeger, J. C., & Cook, N. G. W. (1971). Fundamentals of rock mechanics. London: Chapman and Hall.

    Google Scholar 

  • Lade, P. V., & De Boer, R. (1997, February). The concept of effective stress for soil, concrete and rock. Géotechnique, 47(1), 61–78.

    Article  Google Scholar 

  • Madrigal, L. R. (1974). Descubrimiento de Yacimientos Petrolíferos en Rocas Carbonatadas del Cretácico, en el Sureste de México. Boletín de la Asociación Mexicana de Geofísicos de Exploración. (Vol. XV, Núm. 3). Julio-Agosto-Septiembre.

    Google Scholar 

  • Martínez-Martínez, J., Benavente, D., & García-del-Cura, M. A. (2012). Comparison of the static and dynamic elastic modulus in carbonate rocks. In Bulletin of engineering geology and the environment (Vol. 71, pp. 263–268). Springer.

    Article  Google Scholar 

  • Nolte, K. G., & Economides, M. J. (1989). Fracturing diagnosis using pressure analysis. In M. J. Economides & K. G. Nolte (Eds.), Reservoir simulation. NJ, Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Nur, A., & Byerlee, J. D. (1971). An exact effective stress law for elastic deformation of rock with fluids. Journal of Geophysical Research, 32–39.

    Google Scholar 

  • Saouma, V. E. (2000, May 17). Lecture notes in fracture mechanics CVEN-6831. Department of Civil Environmental and Architectural Engineering, University of Colorado, Boulder. Part III, Chapter 6 (Linear Elastic Fracture Mechanics) (pp. 1–28).

    Google Scholar 

  • Schmitz, J., & Flixeder, F. (1993). Structure of a classic chalk oil field and production enhancement by Horizontal Drilling, Reitbrook, NW Germany. In: Spencer A. M. (eds) Generation, Accumulation and Production of Europe’s Hydrocarbons III. Special Publication of the European Association of Petroleum Geoscientists, vol 3. Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Shimin, L., & Satya, H. (2013, October). Determination of the effective stress law for determination in coalbed methane reservoirs. In Rock mechanics and rock engineering. Wien: Springer.

    Google Scholar 

  • Sih, G. C. (1966, March). On the Westergaard Method of Crack Analysis, Technical Report No. 1. Department of Applied Mechanics, Lehigh University, Bethlehem, Pennsylvania.

    Google Scholar 

  • Suklje, L. (1969). Rheological aspects of soil mechanics. London: WILEY-INTERSCIENCE.

    Google Scholar 

  • Terzaghi, K. (1923). Theoretical soil mechanics. New York: Wiley.

    Google Scholar 

  • Timoshenko, S. P., & Goodier, J. N. (1951). Theory of elasticity (International Student Edition (3rd ed., p. 32). Tokyo: McGraw-Hill.

    Google Scholar 

  • Westergaard, H. M. (1939, June). Bearing pressures and cracks. Bearing pressures through a slightly waved surface or through a nearly flat part of a cylinder, and related problems of cracks. Journal of Applied Mechanics, A-49–A-53.

    Google Scholar 

  • Yin, H., & Groshong, R. H. (2007). A three-dimensional kinematic model for the deformation above an active diapir. In The American association of petroleum geologist, AAPG Bulletin (Vol. 91, No. 3, pp. 343–363).

    Article  Google Scholar 

  • Zoback, M. (2007). Reservoir geomechanics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Enrique Barros Galvis .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barros Galvis, N.E. (2018). Westergaard’s Solution Applied to Carbonate Reservoirs. In: Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77501-2_6

Download citation

Publish with us

Policies and ethics