Revealing Bound Exciton Physics in Strongly Interacting Band Insulators

  • Edoardo Baldini
Part of the Springer Theses book series (Springer Theses)


The field of excitonics has gained increased attention in the last years, due to the unique properties that excitons manifest in the conversion and transport of energy. Key to these developments is the ability to exploit the physics of these collective charge excitations in materials that are easily fabricated and widely available. Particular interest is being devoted to organic semiconductors, transition metal dichalcogenides and wide-bandgap oxides, following the discovery of bound and resonant excitons in these classes of materials.


  1. 1.
    R. Schuster, M. Knupfer, H. Berger, Exciton band structure of pentacene molecular solids: breakdown of the Frenkel exciton model. Phys. Rev. Lett. 98(3), 037402 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    P. Zu, Z.K. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103(8), 459–463 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    M.L. Tiago, J.E. Northrup, S.G. Louie, Ab initio calculation of the electronic and optical properties of solid pentacene. Phys. Rev. B 67(11), 115212 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    D.Y. Qiu, H. Felipe, S.G. Louie, Optical spectrum of MoS\(_2\): many-body effects and diversity of exciton states. Phys. Rev. Lett. 111(21), 216805 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    L.I. Bendavid, E.A. Carter, Status in calculating electronic excited states in transition metal oxides from first principles, in First Principles Approaches to Spectroscopic Properties of Complex Materials (Springer, 2014), pp. 47–98Google Scholar
  6. 6.
    K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Tightly bound excitons in monolayer WSe\(_2\). Phys. Rev. Lett. 113(2), 026803 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    M.M. Ugeda, A.J. Bradley, S. Shi, H. Felipe, Y. Zhang, Diana Y. Qiu, W. Ruan, S. Mo, Z. Hussain and Z. Shen, Z. Shen., Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13(12), 1091–1095 (2014)Google Scholar
  8. 8.
    L. Chiodo, J.M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, A. Rubio, Self-energy and excitonic effects in the electronic and optical properties of TiO\(_2\) crystalline phases. Phys. Rev. B 82(4), 045207 (2010)Google Scholar
  9. 9.
    W. Kang, M.S. Hybertsen, Quasiparticle and optical properties of rutile and anatase TiO\(_2\). Phys. Rev. B 82(8), 085203 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    B.O. Reagen, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO\(_2\) films. Nature 353(6346), 737 (1991)CrossRefGoogle Scholar
  12. 12.
    E. Pelizzetti, C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO\(_2\) particles. Electrochimica Acta 38(1), 47–55 (1993)CrossRefGoogle Scholar
  13. 13.
    N.A. Deskins, M. Dupuis, Electron transport via polaron hopping in bulk TiO\(_2\): a density functional theory characterization. Phys. Rev. B 75(19), 195212 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    C. Di Valentin, A. Selloni, Bulk and surface polarons in photoexcited anatase TiO\(_2\). J. Phys. Chem. Lett. 2(17), 2223–2228 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Jaćimović, C. Vaju, A. Magrez, H. Berger, L. Forró, R. Gaal, V. Cerovski, R. Žikić, Pressure dependence of the large-polaron transport in anatase TiO\(_2\) single crystals. EPL Europhys. Lett. 99(5), 57005 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S. Moser, L. Moreschini, J. Jaćimović, O.S. Barišić, H. Berger, A. Magrez, Y.J. Chang, K.S. Kim, A. Bostwick, E. Rotenberg, Tunable polaronic conduction in anatase TiO\(_2\). Phys. Rev. Lett. 110(19), 196403 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Setvin, C. Franchini, X. Hao, M. Schmid, A. Janotti, M. Kaltak, C.G. van de Walle, G. Kresse, U. Diebold, Direct view at excess electrons in TiO\(_2\) rutile and anatase. Phys. Rev. Lett. 113(8), 086402 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H. Tang, F. Levy, H. Berger, P.E. Schmid, Urbach tail of anatase TiO\(_2\). Phys. Rev. B 52(11), 7771 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    H. Tang, H. Berger, P.E. Schmid, F. Levy, G. Burri, Photoluminescence in TiO\(_2\) anatase single crystals. Solid State Commun. 87(9), 847–850 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Toyozawa. Optical Processes in Solids (Cambridge University Press, 2003)Google Scholar
  21. 21.
    T. Miyata, Line shape analysis of the \(\Gamma \)-exciton spectra of NaCl, NaBr and NaI single crystals. J. Phys. Soc. Jpn. 31(2), 529–551 (1971)ADSCrossRefGoogle Scholar
  22. 22.
    G. Baldini, A. Bosacchi, B. Bosacchi, Exciton-phonon interaction in alkali halides. Phys. Rev. Lett. 23(15), 846 (1969)ADSCrossRefGoogle Scholar
  23. 23.
    M. Kamada, M. Yoshikawa, R. Kato, Phonon side bands of UV absorption in NaNO\(_2\). J. Phys. Soc. Jpn. 39(4), 1004–1012 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    M. Emori, M. Sugita, K. Ozawa, H. Sakama, Electronic structure of epitaxial anatase TiO\(_2\) films: angle-resolved photoelectron spectroscopy study. Phys. Rev. B 85(3), 035129 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    N. Hosaka, T. Sekiya, C. Satoko, S. Kurita, Optical properties of single-crystal anatase TiO\(_2\). J. Phys. Soc. Jpn. 66(3), 877–880 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    T. Sekiya, M. Igarashi, S. Kurita, S. Takekawa, M. Fujisawa, Structure dependence of reflection spectra of TiO\(_2\) single crystals. J. Electron Spectrosc. Relat. Phenom. 92(1), 247–250 (1998)CrossRefGoogle Scholar
  27. 27.
    H.M. Lawler, J.J. Rehr, F. Vila, S.D. Dalosto, E.L. Shirley, Z.H. Levine, Optical to UV spectra and birefringence of SiO\(_2\) and TiO\(_2\): first-principles calculations with excitonic effects. Phys. Rev. B 78(20), 205108 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO\(_2\). J. Phys. Condens. Matter 24(19), 195503 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey Jr., B.P. Keller, U.K. Mishra, S.P. DenBaars, Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71(18), 2572–2574 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    D.D. Sell, Resolved free-exciton transitions in the optical-absorption spectrum of GaAs. Phys. Rev. B 6(10), 3750 (1972)ADSCrossRefGoogle Scholar
  31. 31.
    R. Rinaldi, R. Cingolani, M. Lepore, M. Ferrara, I.M. Catalano, F. Rossi, L. Rota, E. Molinari, P. Lugli, U. Marti, Exciton binding energy in GaAs V-shaped quantum wires. Phys. Rev. Lett. 73(21), 2899 (1994)Google Scholar
  32. 32.
    J.C. Maan, G. Belle, A. Fasolino, M. Altarelli, K. Ploog, Magneto-optical determination of exciton binding energy in GaAs-Ga\(_{1-x}\)Al\(_x\)As quantum wells. Phys. Rev. B 30(4), 2253 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    R.J. Elliott, Intensity of optical absorption by excitons. Phys. Rev. 108(6), 1384 (1957)ADSCrossRefGoogle Scholar
  34. 34.
    L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796 (1965)ADSCrossRefGoogle Scholar
  35. 35.
    A.G. Thomas, W.R. Flavell, A.K. Mallick, A.R. Kumarasinghe, D. Tsoutsou, N. Khan, C. Chatwin, S. Rayner, G.C. Smith, R.L. Stockbauer, Comparison of the electronic structure of anatase and rutile TiO\(_2\) single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy. Phys. Rev. B 75(3), 035105 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    P. Zhang, P. Richard, T. Qian, Y.-M. Xu, X. Dai, H. Ding, A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82(4), 043712 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967)ADSCrossRefGoogle Scholar
  38. 38.
    C. Keffer, T.M. Hayes, A. Bienenstock, PbTe Debye-Waller factors and band-gap temperature dependence. Phys. Rev. Lett. 21(25), 1676 (1968)ADSCrossRefGoogle Scholar
  39. 39.
    P.W. Yu, W.J. Anderson, Y.S. Park, Anomalous temperature dependence of the energy gap of AgGaS\(_2\). Solid State Commun. 13(11), 1883–1887 (1973)ADSCrossRefGoogle Scholar
  40. 40.
    M. Rössle, C.N. Wang, P. Marsik, M. Yazdi-Rizi, K.W. Kim, A. Dubroka, I. Marozau, C.W. Schneider, J. Humlíček, D. Baeriswyl, Optical probe of ferroelectric order in bulk and thin-film perovskite titanates. Phys. Rev. B 88(10), 104110 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    M. Cardona. Renormalization of the optical response of semiconductors by electron-phonon interaction. Cond-Mat0108160 (2001);2-2/full (ArXiv Prepr.)
  42. 42.
    K.K. Rao, S.N. Naidu, L. Iyengar, Thermal expansion of rutile and anatase. J. Am. Ceram. Soc. 53(3), 124–126 (1970)Google Scholar
  43. 43.
    J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson Jr, J.V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109(12), 3639–3646 (1987)Google Scholar
  44. 44.
    D.C. Reynolds, D.C. Look, B. Jogai, B. Jogai, Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN. J. Appl. Phys. 88(10), 5760 (2000)Google Scholar
  45. 45.
    W. Wegscheider, L.N. Pfeiffer, M.M. Dignam, A. Pinczuk, K.W. West, S.L. McCall, R. Hull, Lasing from excitons in quantum wires. Phys. Rev. Lett. 71(24), 4071 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    R. Ambigapathy, I. Bar-Joseph, D.Y. Oberli, S. Haacke, M.J. Brasil, F. Reinhardt, E. Kapon, B. Deveaud, Coulomb correlation and band gap renormalization at high carrier densities in quantum wires. Phys. Rev. Lett. 78(18), 3579 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    S.D. Sarma, D.W. Wang, Many-body renormalization of semiconductor quantum wire excitons: absorption, gain, binding, and unbinding. Phys. Rev. Lett. 84(9), 2010 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    B. Monserrat, Correlation effects on electron-phonon coupling in semiconductors: many-body theory along thermal lines. Phys. Rev. B 93(10), 100301 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    R.J. Gonzalez, R. Zallen, H. Berger, Infrared reflectivity and lattice fundamentals in anatase TiO\(_2\). Phys. Rev. B 55(11), 7014 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    R. Shepard, Dielectric constants and polarizabilities of ions in simple crystals and barium titanate. Phys. Rev. 76(8), 1215 (1949)CrossRefGoogle Scholar
  51. 51.
    H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, Electrical and optical properties of TiO\(_2\) anatase thin films. J. App. Phys. 75(4), 2042–2047 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    J. Pascual, J. Camassel, H. Mathieu, Fine structure in the intrinsic absorption edge of TiO\(_2\). Phys. Rev. B 18(10), 5606 (1978)ADSCrossRefGoogle Scholar
  53. 53.
    A. Amtout, R. Leonelli, Optical properties of rutile near its fundamental band gap. Phys. Rev. B 51(11), 6842 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    A.R. Benrekia, N. Benkhettou, A. Nassour, M. Driz, M. Sahnoun, S. Lebègue, Structural, electronic and optical properties of cubic SrTiO\(_3\) and KTaO\(_3\): ab initio and GW calculations. Phys. B: Cond. Matter 407(13), 2632–2636 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    L. Sponza, V. Véniard, F. Sottile, C. Giorgetti, L. Reining, Role of localized electrons in electron-hole interaction: the case of SrTiO\(_3\). Phys. Rev. B 87(23), 235102 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    P.K. Gogoi, L. Sponza, D. Schmidt, T.C. Asmara, C. Diao, J.C.W. Lim, S.M. Poh, S.-I. Kimura, P.E. Trevisanutto, V. Olevano, A. Rusydi, Anomalous excitons and screenings unveiling strong electronic correlations in SrTi\(_{1- x}\)Nb\(_x\)O\(_3\) (0 \(\le \) x \(\le \) 0.005). Phys. Rev. B 92(3), 035119 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38(2), 89–188 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    S. Galambosi, L. Wirtz, J.A. Soininen, J. Serrano, A. Marini, K. Watanabe, T. Taniguchi, S. Huotari, A. Rubio, K. Hämäläinen, Anisotropic excitonic effects in the energy loss function of hexagonal boron nitride. Phys. Rev. B 83(8), 081413 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO\(_2\) particles: size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99(45), 16646–16654 (1995)CrossRefGoogle Scholar
  60. 60.
    S. Monticone, R. Tufeu, A.V. Kanaev, E. Scolan, C. Sanchez, Quantum size effect in TiO\(_2\) nanoparticles: does it exist? Appl. Surf. Sci. 162, 565–570 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    H. Haug, S. Schmitt-Rink, Basic mechanisms of the optical nonlinearities of semiconductors near the band edge. JOSA B 2(7), 1135–1142 (1985)ADSCrossRefGoogle Scholar
  62. 62.
    V.P. Zhukov, E.V. Chulkov, Ab initio calculations of the electron-phonon interaction and characteristics of large polarons in rutile and anatase. Phys. Solid State 56(7), 1302–1309 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    E. Baldini, T. Palmieri, E. Pomarico, G. Auböck, M. Chergui. Clocking the ultrafast electron cooling in anatase titanium dioxide nanoparticles. ACS Photonics (2018)
  64. 64.
    D.P. Colombo, K.A. Roussel, J. Saeh, D.E. Skinner, J.J. Cavaleri, R.M. Bowman, Femtosecond study of the intensity dependence of electron-hole dynamics in TiO\(_2\) nanoclusters. Chem. Phys. Lett. 232(3), 207–214 (1995)ADSCrossRefGoogle Scholar
  65. 65.
    A. Furube, T. Asahi, H. Masuhara, H. Yamashita, M. Anpo, Charge carrier dynamics of standard TiO\(_2\) catalysts revealed by femtosecond diffuse reflectance spectroscopy. J. Phys. Chem. B 103(16), 3120–3127 (1999)CrossRefGoogle Scholar
  66. 66.
    X. Yang, N. Tamai, How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO\(_2\) nanoparticles by femtosecond laser spectroscopy. Phys. Chem. Chem. Phys. 3(16), 3393–3398 (2001)CrossRefGoogle Scholar
  67. 67.
    Y. Tamaki, A. Furube, R. Katoh, M. Murai, K. Hara, H. Arakawa, M. Tachiya, Trapping dynamics of electrons and holes in a nanocrystalline TiO\(_2\) film revealed by femtosecond visible/near-infrared transient absorption spectroscopy. C. R. Chim. 9(2), 268–274 (2006)CrossRefGoogle Scholar
  68. 68.
    Y. Tamaki, K. Hara, R. Katoh, M. Tachiya, A. Furube, Femtosecond visible-to-IR spectroscopy of TiO\(_2\) nanocrystalline films: elucidation of the electron mobility before deep trapping. J. Phys. Chem. C 113(27), 11741–11746 (2009)CrossRefGoogle Scholar
  69. 69.
    Y. Yamada, Y. Kanemitsu, Determination of electron and hole lifetimes of rutile and anatase TiO\(_2\) single crystals. Appl. Phys. Lett. 101(13), 133907 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    H. Matsuzaki, Y. Matsui, R. Uchida, H. Yada, T. Terashige, B.-S. Li, A. Sawa, M. Kawasaki, Y. Tokura, H. Okamoto, Photocarrier dynamics in anatase TiO\(_2\) investigated by pump-probe absorption spectroscopy. Jpn. J. Appl. Phys. 115(5), 053514 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    F. Nunzi, F. De Angelis, A. Selloni, Ab initio simulation of the absorption spectra of photoexcited carriers in TiO\(_2\) nanoparticles. J. Phys. Chem. Lett. 7(18), 3597–3602 (2016)CrossRefGoogle Scholar
  72. 72.
    P. Zawadzki, Absorption spectra of trapped holes in anatase TiO\(_2\). J. Phys. Chem. C 117(17), 8647–8651 (2013)CrossRefGoogle Scholar
  73. 73.
    M. Watanabe, S. Sasaki, T. Hayashi, Time-resolved study of photoluminescence in anatase TiO\(_2\). J. Lumin. 87, 1234–1236 (2000)CrossRefGoogle Scholar
  74. 74.
    M. Watanabe, T. Hayashi, Time-resolved study of self-trapped exciton luminescence in anatase TiO\(_2\) under two-photon excitation. J. Lumin. 112(1), 88–91 (2005)CrossRefGoogle Scholar
  75. 75.
    K. Wakabayashi, Y. Yamaguchi, T. Sekiya, S. Kurita, Time-resolved luminescence spectra in colorless anatase TiO\(_2\) single crystal. J. Lumin. 112(1), 50–53 (2005)CrossRefGoogle Scholar
  76. 76.
    N. Harada, M. Goto, K. Iijima, H. Sakama, N. Ichikawa, H. Kunugita, K. Ema, Time-resolved luminescence of TiO\(_2\) powders with different crystal structures. Jpn. J. Appl. Phys. 46(7R), 4170 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    L. Cavigli, F. Bogani, A. Vinattieri, V. Faso, G. Baldi, Volume versus surface-mediated recombination in anatase TiO\(_2\) nanoparticles. J. Appl. Phys. 106(5), 053516 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    L. Cavigli, F. Bogani, A. Vinattieri, L. Cortese, M. Colocci, V. Faso, G. Baldi, Carrier recombination dynamics in anatase TiO\(_2\) nanoparticles. Solid State Sci. 12(11), 1877–1880 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    G. Fuchs, C. Schiedel, A. Hangleiter, V. Härle, F. Scholz, Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum-well lasers. Appl. Phys. Lett. 62(4), 396–398 (1993)ADSCrossRefGoogle Scholar
  80. 80.
    V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287(5455), 1011–1013 (2000)ADSCrossRefGoogle Scholar
  81. 81.
    F. Wang, Y. Wu, M.S. Hybertsen, T.F. Heinz, Auger recombination of excitons in one-dimensional systems. Phys. Rev. B 73(24), 245424 (2006)ADSCrossRefGoogle Scholar
  82. 82.
    D. Sun, Y. Rao, G.A. Reider, G. Chen, Y. You, L. Brézin, A.R. Harutyunyan, T.F. Heinz, Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14(10), 5625–5629 (2014)ADSCrossRefGoogle Scholar
  83. 83.
    H. Schweizer, A. Forchel, A. Hangleiter, S. Schmitt-Rink, J.P. Löwenau, H. Haug, Ionization of the direct-gap exciton in photoexcited germanium. Phys. Rev. Lett. 51, 698–701 (1983)ADSCrossRefGoogle Scholar
  84. 84.
    W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B Lasers Opt. 70(2), 261–265 (2000)ADSCrossRefGoogle Scholar
  85. 85.
    F.J. Knorr, C.C. Mercado, K.L. McHale, Trap-state distributions and carrier transport in pure and mixed-phase TiO\(_2\): influence of contacting solvent and interphasial electron transfer. J. Phys. Chem. C 112(33), 12786–12794 (2008)CrossRefGoogle Scholar
  86. 86.
    C.C. Mercado, F.J. Knorr, J.L. McHale, S.M. Usmani, A.S. Ichimura, L.V. Saraf, Location of hole and electron traps on nanocrystalline anatase TiO\(_2\). J. Phys. Chem. C 116(19), 10796–10804 (2012)CrossRefGoogle Scholar
  87. 87.
    P.T. Landsberg, Recombination in Semiconductors (Cambridge University Press, 2003)Google Scholar
  88. 88.
    E.M. Bothschafter, A. Paarmann, E.S. Zijlstra, N. Karpowicz, M.E. Garcia, R. Kienberger, R. Ernstorfer, Ultrafast evolution of the excited-state potential energy surface of TiO\(_2\) single crystals induced by carrier cooling. Phys. Rev. Lett. 110(6), 067402 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    T. Hitosugi, H. Kamisaka, K. Yamashita, H. Nogawa, Y. Furubayashi, S. Nakao, N. Yamada, A. Chikamatsu, H. Kumigashira, M. Oshima, Electronic band structure of transparent conductor: Nb-doped anatase TiO\(_2\). Appl. Phys. Exp. 1(11), 111203 (2008)ADSCrossRefGoogle Scholar
  90. 90.
    Herbert Fröhlich, Hans Pelzer, S. Zienau, XX. Properties of slow electrons in polar materials. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(314), 221–242 (1950)Google Scholar
  91. 91.
    E. Baldini, A. Dominguez, L. Chiodo, E. Sheveleva, M. Yazdi-Rizi, C. Bernhard, A. Rubio, M. Chergui, Anomalous anisotropic exciton temperature dependence in rutile \({\rm TiO}_{2}\). Phys. Rev. B 96, 041204 (2017)ADSCrossRefGoogle Scholar
  92. 92.
    J.T. Devreese, S.N. Klimin, J.L.M. van Mechelen, D. van der Marel, Many-body large polaron optical conductivity in SrTi\(_{1-x}\)Nb\(_x\)O\(_3\). Phys. Rev. B 81(12), 125119 (2010)ADSCrossRefGoogle Scholar
  93. 93.
    B.K. Ridley, Quantum Processes in Semiconductors (Oxford University Press, 2013)Google Scholar
  94. 94.
    M. Betz, G. Göger, A. Leitenstorfer, K. Ortner, C.R. Becker, G. Böhm, A. Laubereau, Ultrafast electron-phonon scattering in semiconductors studied by nondegenerate four-wave mixing. Phys. Rev. B 60(16), R11265 (1999)ADSCrossRefGoogle Scholar
  95. 95.
    M. Betz, G. Göger, A. Laubereau, P. Gartner, L. Bányai, H. Haug, K. Ortner, C.R. Becker, A. Leitenstorfer, Subthreshold carrier-LO phonon dynamics in semiconductors with intermediate polaron coupling: a purely quantum kinetic relaxation channel. Phys. Rev. Lett. 86(20), 4684 (2001)ADSCrossRefGoogle Scholar
  96. 96.
    U. Bockelmann, G. Bastard, Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42(14), 8947 (1990)ADSCrossRefGoogle Scholar
  97. 97.
    E. Baldini, L. Chiodo, A. Dominguez, M. Palummo, S. Moser, M. Yazdi-Rizi, G. Auböck, B.P.P. Mallett, H. Berger, A. Magrez, C. Bernhard, M. Grioni, A. Rubio, M. Chergui. Strongly bound excitons in anatase TiO\(_2\) single crystals and nanoparticles. Nat. Commun. 8 (2017)Google Scholar
  98. 98.
    Y.U. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer Science & Business Media, 2010)Google Scholar
  99. 99.
    F. Giustino, Electron-phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    P.B. Allen, M. Cardona, Theory of the temperature dependence of the direct gap of germanium. Phys. Rev. B 23(4), 1495 (1981)ADSCrossRefGoogle Scholar
  101. 101.
    R. Merlin, Generating coherent THz phonons with light pulses. Solid State Commun. 102(2), 207–220 (1997)Google Scholar
  102. 102.
    P. Ruello, V.E. Gusev, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 56, 21–35 (2015)CrossRefGoogle Scholar
  103. 103.
    L. Brillouin, Diffusion de la lumiére et des rayons x par un corps transparent homogène. Influence de l’agitation termique. Ann. Phys. (Paris) 17(88–122), 21 (1922)Google Scholar
  104. 104.
    C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34(6), 4129 (1986)ADSCrossRefGoogle Scholar
  105. 105.
    J.H. Hodak, A. Henglein, G.V. Hartland, Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes. J. Phys. Chem. B 104(43), 9954–9965 (2000)CrossRefGoogle Scholar
  106. 106.
    N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61(24), 16956 (2000)ADSCrossRefGoogle Scholar
  107. 107.
    T.D. Krauss, F.W. Wise, Coherent acoustic phonons in a semiconductor quantum dot. Phys. Rev. Lett. 79(25), 5102 (1997)ADSCrossRefGoogle Scholar
  108. 108.
    P. Verma, W. Cordts, G. Irmer, J. Monecke, Acoustic vibrations of semiconductor nanocrystals in doped glasses. Phys. Rev. B 60(8), 5778 (1999)ADSCrossRefGoogle Scholar
  109. 109.
    G.W. Chern, C.K. Sun, G.D. Sanders, C.J. Stanton, Generation of coherent acoustic phonons in nitride-based semiconductor nanostructures, in Ultrafast Dynamical Processes in Semiconductors (Springer, 2004), pp. 339–394Google Scholar
  110. 110.
    D. Rossi, L.E. Camacho-Forero, G. Ramos-Sánchez, J.H. Han, J. Cheon, P. Balbuena, D.H. Son, Anisotropic electron-phonon coupling in colloidal layered TiS\(_2\) nanodiscs observed via coherent acoustic phonons. J. Phys. Chem. C 119(13), 7436–7442 (2015)CrossRefGoogle Scholar
  111. 111.
    H. Lamb, On the vibrations of an elastic sphere. Proc. Lond. Math. Soc. 1(1), 189–212 (1881)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    N. Nishiguchi, T. Sakuma, Vibrational spectrum and specific heat of fine particles. Solid State Commun. 38(11), 1073–1077 (1981)ADSCrossRefGoogle Scholar
  113. 113.
    A. Tamura, K. Higeta, T. Ichinokawa, Lattice vibrations and specific heat of a small particle. J. Phys. C Solid State Phys. 15(24), 4975 (1982)ADSCrossRefGoogle Scholar
  114. 114.
    M. Ivanda, K. Furić, S. Musić, M. Ristić, M. Gotić, D. Ristić, A.M. Tonejc, I. Djerdj, M. Mattarelli, M. Montagna et al., Low wavenumber Raman scattering of nanoparticles and nanocomposite materials. J. Raman. Spectrosc. 38(6), 647–659 (2007)ADSCrossRefGoogle Scholar
  115. 115.
    M.H. Rittmann-Frank, C.J. Milne, J. Rittmann, M. Reinhard, T.J. Penfold, M. Chergui, Mapping of the photoinduced electron traps in TiO\(_2\) by picosecond x-ray absorption spectroscopy. Angew. Chem. Int. Ed. 53(23), 5858–5862 (2014)Google Scholar
  116. 116.
    C. Thomsen, J. Strait, Z. Vardeny, H.J. Maris, J. Tauc, J.J. Hauser, Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53(10), 989 (1984)ADSCrossRefGoogle Scholar
  117. 117.
    O. Matsuda, O.B. Wright, D.H. Hurley, V.E. Gusev, K. Shimizu, Coherent shear phonon generation and detection with ultrashort optical pulses. Phys. Rev. Lett. 93(9), 095501 (2004)Google Scholar
  118. 118.
    Y.-C. Wen, T.-S. Ko, T.-H. Lu, H.-C. Kuo, J.-I. Chyi, C.-K. Sun, Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling. Phys. Rev. B 80(19), 195201 (2009)ADSCrossRefGoogle Scholar
  119. 119.
    Y.-X. Yan, E.B. Gamble Jr., K.A. Nelson, Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 83(11), 5391–5399 (1985)ADSCrossRefGoogle Scholar
  120. 120.
    H. Tanaka, T. Sonehara, S. Takagi, A new phase-coherent light scattering method: first observation of complex Brillouin spectra. Phys. Rev. Lett. 79, 881–884 (1997)ADSCrossRefGoogle Scholar
  121. 121.
    C.V. Korff Schmising, A. Harpoeth, N. Zhavoronkov, Z. Ansari, C. Aku-Leh, M. Woerner, T. Elsaesser, M. Bargheer, M. Schmidbauer, I. Vrejoiu et al., Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78(6):060404 (2008)Google Scholar
  122. 122.
    W.-J. Yin, S. Chen, J.-H. Yang, X.-G. Gong, Y. Yan, S.-H. Wei, Effective band gap narrowing of anatase TiO\(_2\) by strain along a soft crystal direction. Appl. Phys. Lett. 96(22), 221901 (2010)ADSCrossRefGoogle Scholar
  123. 123.
    S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goates, B.F. Woodfield, Heat capacities and thermodynamic functions of TiO\(_2\) anatase and rutile: analysis of phase stability. Am. Miner. 94(2–3), 236–243 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    T.Y. Chen, C.H. Hsia, H.S. Son, D.H. Son, Ultrafast energy transfer and strong dynamic non-condon effect on ligand field transitions by coherent phonon in \(\gamma \)-Fe\(_2\)O\(_3\) nanocrystals. J. Am. Chem. Soc. 129(35), 10829–10836 (2007)CrossRefGoogle Scholar
  125. 125.
    K. Ishii, S. Takeuchi, T. Tahara, Pronounced non-Condon effect as the origin of the quantum beat observed in the time-resolved absorption signal from excited-state cis-stilbene. J. Phys. Chem. A 112(11), 2219–2227 (2008)Google Scholar
  126. 126.
    A. Hagfeldt, M. Grätzel, Molecular photovoltaics. Acc. Chem. Res. 33(5), 269–277 (2000)CrossRefGoogle Scholar
  127. 127.
    M. Grätzel, Molecular photovoltaics mimic photosynthesis. Eur. Biophys. J. Biophys. Lett. 40, 37–37 (2011)Google Scholar
  128. 128.
    M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: a brief overview. Sol. Energy 85(6), 1172–1178 (2011)ADSCrossRefGoogle Scholar
  129. 129.
    K. Kalyanasundaram, S.M. Zakeeruddin, M. Grätzel, Photonic and optoelectronic devices based on mesoscopic thin films. Chim. Int. J. Chem. 65(9), 738–742 (2011)CrossRefGoogle Scholar
  130. 130.
    A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO\(_2\) surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)CrossRefGoogle Scholar
  131. 131.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRefGoogle Scholar
  132. 132.
    K. Nakata, A. Fujishima, TiO\(_2\) photocatalysis: design and applications. J. Photochem. Photobiol. C Photochem. Rev. 13(3), 169–189 (2012)CrossRefGoogle Scholar
  133. 133.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)ADSCrossRefGoogle Scholar
  134. 134.
    G. Hodes, Perovskite-based solar cells. Science 342(6156), 317–318 (2013)ADSCrossRefGoogle Scholar
  135. 135.
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)ADSCrossRefGoogle Scholar
  136. 136.
    A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel, J.E. Moser, Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics 8(3), 250–255 (2014)ADSCrossRefGoogle Scholar
  137. 137.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)ADSCrossRefGoogle Scholar
  138. 138.
    A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO\(_2\) nanoparticles. J. Am. Chem. Soc. 129(48), 14852–14853 (2007)CrossRefGoogle Scholar
  139. 139.
    L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya. Mechanisms of plasmon-induced charge separation and recombination at gold nanoparticle supported on different size TiO\(_2\) film systems, in Photonics Asia 2007 (International Society for Optics and Photonics, 2007), pp. 68310W–68310W–10Google Scholar
  140. 140.
    J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, M. Grätzel, Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO\(_2\)) interface. J. Phys. Chem. 100(23), 9577–9578 (1996)CrossRefGoogle Scholar
  141. 141.
    F. Willig, R. Eichberger, N.S. Sundaresan, B.A. Parkinson, Experimental time scale of Gerischer’s distribution curves for electron-transfer reactions at semiconductor electrodes. J. Am. Chem. Soc. 112(7), 2702–2707 (1990)CrossRefGoogle Scholar
  142. 142.
    Y. Rosenwaks, B.R. Thacker, R.K. Ahrenkiel, A.J. Nozik, Electron transfer dynamics at P-gallium arsenide/liquid interfaces. J. Phys. Chem. 96(25), 10096–10098 (1992)CrossRefGoogle Scholar
  143. 143.
    T.A. Heimer, G.J. Meyer, Luminescence of charge transfer sensitizers anchored to metal oxide nanoparticles. J. Lumin. 70(1), 468–478 (1996)CrossRefGoogle Scholar
  144. 144.
    O. Bräm, A. Cannizzo, M. Chergui, Ultrafast fluorescence studies of dye sensitized solar cells. Phys. Chem. Chem. Phys. 14(22), 7934–7937 (2012)CrossRefGoogle Scholar
  145. 145.
    R. Huber, S. Spörlein, J.E. Moser, M. Grätzel, J. Wachtveitl, The role of surface states in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. J. Phys. Chem. B 104(38), 8995–9003 (2000)CrossRefGoogle Scholar
  146. 146.
    J. Kallioinen, G. Benkö, V. Sundström, J.E. Korppi-Tommola, A.P. Yartsev, Electron transfer from the singlet and triplet excited states of Ru(dcbpy)\(_2\)(NCS)\(_2\) into nanocrystalline TiO\(_2\) thin films. J. Phys. Chem. B 106(17), 4396–4404 (2002)CrossRefGoogle Scholar
  147. 147.
    G. Benkö, P. Myllyperkiö, J. Pan, A.P. Yartsev, V. Sundström, Photoinduced electron injection from Ru(dcbpy)\(_2\) NCS\(_2\) to SnO\(_2\) and TiO\(_2\) nanocrystalline films. J. Am. Chem. Soc. 125(5), 1118–1119 (2003)CrossRefGoogle Scholar
  148. 148.
    J. Kallioinen, G. Benkö, P. Myllyperkiö, L. Khriachtchev, B. Skårman, R. Wallenberg, M. Tuomikoski, J. Korppi-Tommola, V. Sundström, A.P. Yartsev, Photoinduced ultrafast dynamics of Ru(dcbpy)\(_2\)(NCS)\(_2\)-sensitized nanocrystalline TiO\(_2\) films: the influence of sample preparation and experimental conditions. J. Phys. Chem. B 108(20), 6365–6373 (2004)CrossRefGoogle Scholar
  149. 149.
    R. Katoh, A. Furube, A.V. Barzykin, H. Arakawa, M. Tachiya, Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord. Chem. Rev. 248(13), 1195–1213 (2004)CrossRefGoogle Scholar
  150. 150.
    A. Furube, Y. Tamaki, M. Murai, K. Hara, R. Katoh, M. Tachiya, Femtosecond visible-to-IR spectroscopy of TiO\(_2\) nanocrystalline films: dynamics of UV-generated charge carrier relaxation at different excitation wavelengths, in NanoScience+ Engineering (International Society for Optics and Photonics, 2007), pp. 66430J–66430J–9Google Scholar
  151. 151.
    M. Pellnor, P. Myllyperkiö, J. Korppi-Tommola, A. Yartsev, V. Sundström, Photoinduced interfacial electron injection in Run3–TiO\(_2\) thin films: resolving picosecond timescale injection from the triplet state of the protonated and deprotonated dyes. Chem. Phys. Lett. 462(4), 205–208 (2008)ADSCrossRefGoogle Scholar
  152. 152.
    L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya, Mechanism of particle size effect on electron injection efficiency in ruthenium dye-sensitized TiO\(_2\) nanoparticle films. J. Phys. Chem. C 114(18), 8135–8143 (2010)CrossRefGoogle Scholar
  153. 153.
    J. Teuscher, J.D. Décoppet, A. Punzi, A.M. Zakeeruddin, J.E. Moser, M. Grätzel, Photoinduced interfacial electron injection dynamics in dye-sensitized solar cells under photovoltaic operating conditions. J. Phys. Chem. Lett. 3(24), 3786–3790 (2012)CrossRefGoogle Scholar
  154. 154.
    N.A. Anderson, T. Lian, Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coord. Chem. Rev. 248(13), 1231–1246 (2004)CrossRefGoogle Scholar
  155. 155.
    H. Němec, P. Kužel, V. Sundström, Far-infrared response of free charge carriers localized in semiconductor nanoparticles. Phys. Rev. B 79(11), 115309 (2009)ADSCrossRefGoogle Scholar
  156. 156.
    H. Němec, J. Rochford, O. Taratula, E. Galoppini, P. Kužel, T. Polívka, A. Yartsev, V. Sundström, Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO\(_2\) nanocrystals: a study using ultrafast terahertz spectroscopy. Phys. Rev. Lett. 104(19), 197401 (2010)ADSCrossRefGoogle Scholar
  157. 157.
    J.J.H. Pijpers, R. Ulbricht, S. Derossi, J.N.H. Reek, M. Bonn, Picosecond Electron injection dynamics in dye-sensitized oxides in the presence of electrolyte. J. Phys. Chem. C 115(5), 2578–2584 (2011)CrossRefGoogle Scholar
  158. 158.
    C.F. Negre, R.L. Milot, L.A. Martini, W. Ding, R.H. Crabtree, C.A. Schmuttenmaer, V.S. Batista, Efficiency of interfacial electron transfer from Zn-porphyrin dyes into TiO\(_2\) correlated to the linker single molecule conductance. J. Phys. Chem. C 117(46), 24462–24470 (2013)CrossRefGoogle Scholar
  159. 159.
    Y. Wang, J.B. Asbury, T. Lian, Ultrafast excited-state dynamics of Re(co)\(_3\)cl(dcbpy) in solution and on nanocrystalline TiO\(_2\) and ZrO\(_2\) thin films. J. Phys. Chem. A 104(18), 4291–4299 (2000)CrossRefGoogle Scholar
  160. 160.
    J.E. Katz, B. Gilbert, X. Zhang, K. Attenkofer, R.W. Falcone, G.A. Waychunas, Observation of transient iron (ii) formation in dye-sensitized iron oxide nanoparticles by time-resolved x-ray spectroscopy. J. Phys. Chem. Lett. 1(9), 1372–1376 (2010)Google Scholar
  161. 161.
    J.E. Katz, X. Zhang, K. Attenkofer, K.W. Chapman, C. Frandsen, P. Zarzycki, K.M. Rosso, R.W. Falcone, G.A. Waychunas, B. Gilbert, Electron small polarons and their mobility in iron (oxyhydr) oxide nanoparticles. Science 337(6099), 1200–1203 (2012)ADSCrossRefGoogle Scholar
  162. 162.
    M. Chergui, Time-resolved X-ray spectroscopies of chemical systems: new perspectives. Struct. Dyn. 3(3), 031001 (2016)CrossRefGoogle Scholar
  163. 163.
    F.G. Santomauro, A. Lübcke, J. Rittmann, E. Baldini, A. Ferrer, M. Silatani, P. Zimmermann, S. Grübel, J.A. Johnson, S.O. Mariager, Femtosecond x-ray absorption study of electron localization in photoexcited anatase TiO\(_2\). Sci. Rep. 5 (2015)Google Scholar
  164. 164.
    L. Dworak, S. Roth, J. Wachtveitl, Charge transfer-induced state filling in CdSe quantum dot-alizarin complexes. J. Phys. Chem. C 121(5), 2613–2619 (2017)CrossRefGoogle Scholar
  165. 165.
    E. Baldini, T. Palmieri, T. Rossi, M. Oppermann, E. Pomarico, G. Auböck, M. Chergui, Interfacial electron injection probed by a substrate-specific excitonic signature. J. Am. Chem. Soc. 139(33), 11584–11589 (2017)CrossRefGoogle Scholar
  166. 166.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by Cis-X2bis (2, 2’-bipyridyl-4, 4’-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)CrossRefGoogle Scholar
  167. 167.
    O. Bräm, F. Messina, A.M. El-Zohry, A. Cannizzo, M. Chergui, Polychromatic femtosecond fluorescence studies of metal–polypyridine complexes in solution. Chem. Phys. 393(1), 51–57 (2012)ADSCrossRefGoogle Scholar
  168. 168.
    G. Auböck, M. Chergui, Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+ apex. Nat. Chem. 7(8), 1–5 (2015)Google Scholar
  169. 169.
    A. Namekawa, R. Katoh, Exciton annihilation in dye-sensitized nanocrystalline semiconductor films. Chem. Phys. Lett. 659(C):154–158 (2016)Google Scholar
  170. 170.
    A.N. Tarnovsky, W. Gawelda, M. Johnson, C. Bressler, M. Chergui, Photexcitation of aqueous ruthenium (ii)-Tris-(2, 2’-Bipyridine) with high-intensity femtosecond laser pulses. J. Phys. Chem. B 110(51), 26497–26505 (2006)CrossRefGoogle Scholar
  171. 171.
    K. Kalyanasundaram, Photophysics, photochemistry and solar energy conversion with tris (bipyridyl) ruthenium (ii) and its analogues. Coord. Chem. Rev. 46, 159–244 (1982)CrossRefGoogle Scholar
  172. 172.
    J. Andersson, F. Puntoriero, S. Serroni, A. Yartsev, T. Pascher, T. Polı\(\acute{{\rm v}}\)ka, S. Campagna, V. Sundström, Ultrafast singlet energy transfer competes with intersystem crossing in a multi-center transition metal polypyridine complex. Chem. Phys. Lett. 386(4), 336–341 (2004)Google Scholar
  173. 173.
    G. Benkö, J. Kallioinen, P. Myllyperkiö, F. Trif, J.E. Korppi-Tommola, A.P. Yartsev, V. Sundström, V. Sundström, Interligand electron transfer determines triplet excited state electron injection in RuN3-sensitized TiO\(_2\) films. J. Phys. Chem. B 108(9), 2862–2867 (2004)Google Scholar
  174. 174.
    H. Long, G. Yang, A. Chen, Y. Li, P. Lu, Femtosecond z-scan measurement of third-order optical nonlinearities in anatase TiO\(_2\) thin films. Opt. Commun. 282(9), 1815–1818 (2009)Google Scholar
  175. 175.
    S. Griesse-Nascimento, O. Reshef, M. Moebius, C. Evans, E. Mazur, Nonlinear optics in TiO\(_2\) nanoscale waveguides, in Nano-Optics: Principles Enabling Basic Research and Applications (Springer, 2017), pp. 449–449Google Scholar
  176. 176.
    S.K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, R. Grunwald, Highly efficient THG in TiO\(_2\) nanolayers for third-order pulse characterization. Opt. Exp. 19(18), 16985–16995 (2011)ADSCrossRefGoogle Scholar
  177. 177.
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO\(_2\) single crystals with a large percentage of reactive facets. Nature 453(7195), 638–641 (2008)ADSCrossRefGoogle Scholar
  178. 178.
    G. Giorgi, M. Palummo, L. Chiodo, K. Yamashita, Excitons at the (001) surface of anatase: spatial behavior and optical signatures. Phys. Rev. B 84(7), 073404 (2011)Google Scholar
  179. 179.
    M. Palummo, G. Giorgi, L. Chiodo, A. Rubio, K. Yamashita, The nature of radiative transitions in TiO\(_2\)-based nanosheets. J. Phys. Chem. C 116(34), 18495–18503 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations