Clocking the Interband Scattering in Strongly Interacting Multiband Metals

Part of the Springer Theses book series (Springer Theses)


One of the cornerstones of ultrafast spectroscopy is the ability to disentangle the carrier dynamics from the response of other degrees of freedom. The origin of this concept is intimately related to the so-called two-temperature model, the earliest and simplest phenomenological model describing the nonequilibrium response of conventional Fermi liquids.


  1. 1.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from the metal surfaces induced by ultrashort lasers pulses. Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki 66(2), 776–781 (1974)Google Scholar
  2. 2.
    S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Femtosecond room-temperature measurement of the electron-phonon coupling constant \(\gamma \) in metallic superconductors. Phys. Rev. Lett. 64(18), 2172 (1990)Google Scholar
  3. 3.
    C.-K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50(20), 15337 (1994)Google Scholar
  4. 4.
    N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61(24), 16956 (2000)Google Scholar
  5. 5.
    T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf, Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95(18), 187403 (2005)Google Scholar
  6. 6.
    K. Ishioka, M. Hase, M. Kitajima, L. Wirtz, A. Rubio, H. Petek, Ultrafast electron-phonon decoupling in graphite. Phys. Rev. B 77(12), 121402 (2008)Google Scholar
  7. 7.
    M. Breusing, C. Ropers, T. Elsaesser, Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102(8), 086809 (2009)Google Scholar
  8. 8.
    Y. Ishida, T. Togashi, K. Yamamoto, M. Tanaka, T. Taniuchi, T. Kiss, M. Nakajima, T. Suemoto, S. Shin, Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite. Sci. Rep. 1, 64 (2011)Google Scholar
  9. 9.
    M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J.P. Rabe, C. Ropers, A. Knorr, T. Elsaesser, Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83(15), 153410 (2011)Google Scholar
  10. 10.
    D.P. Di Vincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29(4), 1685 (1984)Google Scholar
  11. 11.
    C.D. Spataru, M.A. Cazalilla, A. Rubio, L.X. Benedict, P.M. Echenique, S.G. Louie, Anomalous quasiparticle lifetime in graphite: band structure effects. Phys. Rev. Lett. 87(24), 246405 (2001)Google Scholar
  12. 12.
    S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson, Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93(18), 185503 (2004)Google Scholar
  13. 13.
    M.S. Dresselhaus, G. Dresselhaus, Light scattering in graphite intercalation compounds, in Light Scattering in Solids III, (Springer, Berlin, 1982), pp. 3–57Google Scholar
  14. 14.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92(10), 106804 (2004)Google Scholar
  15. 15.
    T. Elsaesser, R.J. Bäuerle, W. Kaiser, Hot phonons in InAs observed via picosecond free-carrier absorption. Phys. Rev. B 40(5), 2976 (1989)Google Scholar
  16. 16.
    H.P.M. Pellemans, P.C.M. Planken, Effect of nonequilibrium LO phonons and hot electrons on far-infrared intraband absorption in n-type GaAs. Phys. Rev. B 57(8), R4222 (1998)Google Scholar
  17. 17.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)Google Scholar
  18. 18.
    J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Superconductivity of metallic boron in MgB\(_2\). Phys. Rev. Lett. 86(20), 4656 (2001)Google Scholar
  19. 19.
    Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, Electron-phonon interaction in the normal and superconducting states of MgB\(_2\). Phys. Rev. B 64(2), 020501 (2001)Google Scholar
  20. 20.
    K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB\(_2\) and AlB\(_2\). Phys. Rev. Lett. 86(25), 5771 (2001)Google Scholar
  21. 21.
    K. Kunc, I. Loa, K. Syassen, R.K. Kremer, K. Ahn, MgB\(_2\) Under pressure: phonon calculations, raman spectroscopy, and optical reflectance. J. Phys. Cond. Matt. 13(44), 9945 (2001)Google Scholar
  22. 22.
    A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y. Kong, O.K. Andersen, B.J. Gibson, K. Ahn, R.K. Kremer, Specific heat of MgB\(_2\) in a one- and a two-band model from first-principles calculations. J. Phys. Cond. Matt. 14(6), 1353 (2002)Google Scholar
  23. 23.
    H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, The origin of the anomalous superconducting properties of MgB\(_2\). Nature 418(6899), 758–760 (2002)Google Scholar
  24. 24.
    E.A. Yelland, J.R. Cooper, A. Carrington, N.E. Hussey, P.J. Meeson, S. Lee, A. Yamamoto, S. Tajima, de haas-van alphen effect in single crystal \({\text{mgb}}_{2}\). Phys. Rev. Lett. 88, 217002 (2002)Google Scholar
  25. 25.
    S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.C. Wang, H. Ding, A. Kaminski, J.C. Campuzano, S. Sasaki et al., The origin of multiple superconducting gaps in MgB\(_2\). Nature 423(6935), 65–67 (2003)Google Scholar
  26. 26.
    J.W. Quilty, S. Lee, A. Yamamoto, S. Tajima, Superconducting gap in MgB\(_2\): electronic Raman scattering measurements of single crystals. Phys. Rev. Lett. 88(8), 087001 (2002)Google Scholar
  27. 27.
    T. Yildirim, O. Gülseren, J.W. Lynn, C.M. Brown, T.J. Udovic, Q. Huang, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Slusky, T. He, M.K. Haas, P. Khalifah, K. Inumaru, R.J. Cava, Giant anharmonicity and nonlinear electron-phonon coupling in MgB\(_2\): a combined first-principles calculation and neutron scattering study. Phys. Rev. Lett. 87(3), 037001 (2001)Google Scholar
  28. 28.
    A. Shukla, M. Calandra, M. d’Astuto, M. Lazzeri, F. Mauri, C. Bellin, M. Krisch, J. Karpinski, S.M. Kazakov, J. Jun et al., Phonon dispersion and lifetimes in MgB\(_2\). Phys. Rev. Lett. 90(9), 095506 (2003)Google Scholar
  29. 29.
    S. Dal Conte, L. Vidmar, D. Golež, M. Mierzejewski, G. Soavi, S. Peli, F. Banfi, G. Ferrini, R. Comin, B.M. Ludbrook et al., Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11(5), 421–426 (2015)Google Scholar
  30. 30.
    E. Baldini, A. Mann, L. Benfatto, E. Cappelluti, A. Acocella, V.M. Silkin, S.V. Eremeev, A.B. Kuzmenko, S. Borroni, T. Tan, X.X. Xi, F. Zerbetto, R. Merlin, F. Carbone, Real-time observation of phonon-mediated \(\sigma \text{- }\pi \) interband scattering in \({\text{ MgB }}_{2}\). Phys. Rev. Lett. 119, 097002 (2017)Google Scholar
  31. 31.
    A. Balassis, E.V. Chulkov, P.M. Echenique, V.M. Silkin, First-principles calculations of dielectric and optical properties of MgB\(_2\). Phys. Rev. B 78(22), 224502 (2008)Google Scholar
  32. 32.
    V. Russell, R. Hirst, F.A. Kanda, A.J. King, An x-ray study of the magnesium borides. Acta Crystallogr. 6(11–12), 870–870 (1953)Google Scholar
  33. 33.
    S.L. Bud’ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, P.C. Canfield, Boron isotope effect in superconducting MgB\(_2\). Phys. Rev. Lett. 86(9), 1877 (2001)Google Scholar
  34. 34.
    H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, J. Akimitsu, Evidence for strong-coupling s-wave superconductivity in MgB\(_2\): \(^{11}\)B NMR study. Phys. Rev. Lett. 87(12), 127001 (2001)Google Scholar
  35. 35.
    A.Y. Liu, I. Mazin, J. Kortus, Beyond Eliashberg superconductivity in MgB\(_2\): anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87(8), 087005 (2001)Google Scholar
  36. 36.
    Y. Wang, T. Plackowski, A. Junod, Specific heat in the superconducting and normal state (2–300 K, 0–16 T), and magnetic susceptibility of the 38 K superconductor MgB\(_2\): evidence for a multicomponent gap. Physica C 355(3), 179–193 (2001)Google Scholar
  37. 37.
    M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, D.G. Hinks, W.N. Kang, E. Choi, H.J. Kim, H. Kim et al., Two-band superconductivity in MgB\(_2\). Phys. Rev. Lett. 89(18), 187002 (2002)Google Scholar
  38. 38.
    M.R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S.M. Kazakov, J. Karpinski, Ø. Fischer, Vortex imaging in the \(\pi \) band of magnesium diboride. Phys. Rev. Lett. 89(18), 187003 (2002)Google Scholar
  39. 39.
    X.K. Chen, M.J. Konstantinović, J.C. Irwin, D.D. Lawrie, J.P. Franck, Evidence for two superconducting gaps in MgB\(_2\). Phys. Rev. Lett. 87(15), 157002 (2001)Google Scholar
  40. 40.
    A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, J. Hu, R.J. Hemley, H.-K. Mao, G. Lapertot, S.L. Bud’ko, P.C. Canfield, Raman spectrum and lattice parameters of MgB\(_2\) as a function of pressure. Phys. Rev. B 64(10), 100509 (2001)Google Scholar
  41. 41.
    J.W. Quilty, S. Lee, S. Tajima, A. Yamanaka, c-axis Raman scattering spectra of MgB\(_2\): observation of a dirty-limit gap in the \(\pi \) bands. Phys. Rev. Lett. 90(20), 207006 (2003)Google Scholar
  42. 42.
    G. Blumberg, A. Mialitsin, B.S. Dennis, N.D. Zhigadlo, J. Karpinski, Multi-gap superconductivity in MgB\(_2\): magneto-Raman spectroscopy. Physica C 456(1), 75–82 (2007)Google Scholar
  43. 43.
    V. Guritanu, A.B. Kuzmenko, D. van der Marel, S.M. Kazakov, N.D. Zhigadlo, J. Karpinski, Anisotropic optical conductivity and two colors of MgB\(_2\). Phys. Rev. B 73(10), 104509 (2006)Google Scholar
  44. 44.
    A.B. Kuzmenko, Multiband and impurity effects in infrared and optical spectra of MgB\(_2\). Physica C 456(1), 63–74 (2007)Google Scholar
  45. 45.
    T. Kakeshita, S. Lee, S. Tajima, Anisotropic Drude response and the effect of anisotropic C substitution in Mg(B\(_{1-x}\)C\(_x\))\(_2\). Phys. Rev. Lett. 97(3), 037002 (2006)Google Scholar
  46. 46.
    T. Masui, S. Lee, S. Tajima, Carbon-substitution effect on the electronic properties of MgB\(_2\) single crystals. Phys. Rev. B 70(2), 024504 (2004)Google Scholar
  47. 47.
    I.I. Mazin, V.P. Antropov, Electronic structure, electron-phonon coupling, and multiband effects in MgB\(_2\). Physica C 385(1), 49–65 (2003)Google Scholar
  48. 48.
    Y.Q. Cai, P. Chow, O.D. Restrepo, Y. Takano, K. Togano, H. Kito, H. Ishii, C.C. Chen, K.S. Liang, C.T. Chen et al., Low-energy charge-density excitations in MgB\(_2\): striking interplay between single-particle and collective behavior for large momenta. Phys. Rev. Lett. 97(17), 176402 (2006)Google Scholar
  49. 49.
    W. Ku, W.E. Pickett, R.T. Scalettar, A.G. Eguiluz, Ab initio investigation of collective charge excitations in MgB\(_2\). Phys. Rev. Lett. 88(5), 057001 (2002)Google Scholar
  50. 50.
    V.M. Silkin, A. Balassis, P.M. Echenique, E.V. Chulkov, Ab initio calculation of low-energy collective charge-density excitations in MgB\(_2\). Phys. Rev. B 80(5), 054521 (2009)Google Scholar
  51. 51.
    S. Galambosi, J.A. Soininen, A. Mattila, S. Huotari, S. Manninen, G. Vankó, N.D. Zhigadlo, J. Karpinski, K. Hämäläinen, Inelastic x-ray scattering study of collective electron excitations in MgB\(_2\). Phys. Rev. B 71(6), 060504 (2005)Google Scholar
  52. 52.
    L.D. Landau, On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 10, 25 (1946)Google Scholar
  53. 53.
    N.N. Bogoliubov, V.V. Tolmachev, D.V. Shirkov, A new method in the theory of superconductivity, in Academy of Sciences of the USSR, (1958)Google Scholar
  54. 54.
    M. Calandra, F. Mauri, Electron-phonon coupling and phonon self-energy in MgB\(_2\): interpretation of MgB\(_2\) Raman spectra. Phys. Rev. B 71(6), 064501 (2005)Google Scholar
  55. 55.
    A.J. Leggett, Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36(5), 901–930 (1966)Google Scholar
  56. 56.
    T. Cea, L. Benfatto, Signature of the Leggett mode in the \({\text{ A }}_{1g}\) Raman response: from MgB\(_2\) to iron-based superconductors. Phys. Rev. B 94(6), 064512 (2016)Google Scholar
  57. 57.
    D. Mou, R. Jiang, V. Taufour, R. Flint, S.L. Bud’ko, P.C. Canfield, J.S. Wen, Z.J. Xu, Ge. Gu, A. Kaminski, Strong interaction between electrons and collective excitations in the multiband superconductor MgB2. Phys. Rev. B 91(14), 140502 (2015)Google Scholar
  58. 58.
    Y. Xu, M. Khafizov, L. Satrapinsky, P. Kúš, A. Plecenik, R. Sobolewski, Time-resolved photoexcitation of the superconducting two-gap state in MgB\(_2\) thin films. Phys. Rev. B91(19) (2003)Google Scholar
  59. 59.
    J. Demsar, B. Podobnik, V.V. Kabanov, Th Wolf, D. Mihailovic, Superconducting gap \(\Delta _{\text{ C }}\), the pseudogap \(\Delta _{\text{ P }}\), and pair fluctuations above T\(_{\text{ C }}\) in overdoped Y\(_{1-x}\)Ca\(_x\)Ba\(_2\)Cu\(_3\)O\(_{7-\delta }\) from femtosecond time-domain spectroscopy. Phys. Rev. Lett. 82(24), 4918 (1999)Google Scholar
  60. 60.
    J. Demsar, R.D. Averitt, A.J. Taylor, V.V. Kabanov, W.N. Kang, H.J. Kim, E.M. Choi, S.I. Lee, Pair-breaking and superconducting state recovery dynamics in MgB\(_2\). Phys. Rev. Lett. 91(26), 267002 (2003)Google Scholar
  61. 61.
    L. Benfatto, S.G. Sharapov, Optical-conductivity sum rule in cuprates and unconventional charge density waves: a short review. Low Temp. Phys. 32(6), 533–545 (2006)Google Scholar
  62. 62.
    M. Ortolani, P. Calvani, S. Lupi, Frequency-dependent thermal response of the charge system and the restricted sum rules of La\(_{2-x}\)S r\(_x\)CuO\(_4\). Phys. Rev. Lett. 94(6), 067002 (2005)Google Scholar
  63. 63.
    A. Toschi, M. Capone, M. Ortolani, P. Calvani, S. Lupi, C. Castellani, Temperature dependence of the optical spectral weight in the cuprates: role of electron correlations. Phys. Rev. Lett. 95, 097002 (2005)Google Scholar
  64. 64.
    R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58(16), 1680 (1987)Google Scholar
  65. 65.
    V.V. Kruglyak, R.J. Hicken, P. Matousek, M. Towrie, Spectroscopic study of optically induced ultrafast electron dynamics in gold. Phys. Rev. B 75(3), 035410 (2007)Google Scholar
  66. 66.
    L. Ortenzi, E. Cappelluti, L. Benfatto, L. Pietronero, Fermi-surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 103, 046404 (2009)Google Scholar
  67. 67.
    L. Benfatto, E. Cappelluti, Effects of the Fermi-surface shrinking on the optical sum rule in pnictides. Phys. Rev. B 83, 104516 (2011)Google Scholar
  68. 68.
    F. Marsiglio, M. Schossmann, J.P. Carbotte, Iterative analytic continuation of the electron self-energy to the real axis. Phys. Rev. B 37(10), 4965 (1988)Google Scholar
  69. 69.
    H. Uchiyama, K.M. Shen, S. Lee, A. Damascelli, D.H. Lu, D.L. Feng, Z.-X. Shen, S. Tajima, Electronic structure of MgB\(_2\) from angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 88(15), 157002 (2002)Google Scholar
  70. 70.
    A. Acocella, G.A. Jones, F. Zerbetto, Excitation energy transfer and low-efficiency photolytic splitting of water ice by vacuum UV light. J. Phys. Chem. Lett. 3(23), 3610–3615 (2012)Google Scholar
  71. 71.
    A. Acocella, F. Carbone, F. Zerbetto, Quantum study of laser-induced initial activation of graphite-to-diamond conversion. J. Am. Chem. Soc. 132(35), 12166–12167 (2010)Google Scholar
  72. 72.
    A. Acocella, G.A. Jones, F. Zerbetto, What is adenine doing in photolyase? The Journal of Phys. Chem. B 114(11), 4101–4106 (2010)Google Scholar
  73. 73.
    G.A. Jones, A. Acocella, F. Zerbetto, On-the-fly, electric-field-driven, coupled electron–nuclear dynamics. J. Phys. Chem. A 112(40), 9650–9656 (2008)Google Scholar
  74. 74.
    G.A. Jones, A. Acocella, F. Zerbetto, Nonlinear optical properties of C\(_{60}\) with explicit time-dependent electron dynamics. Theor. Chem. Acc. 118(1), 99–106 (2007)Google Scholar
  75. 75.
    A. Acocella, G.A. Jones, F. Zerbetto, Mono-and bichromatic electron dynamics: LiH, a test case. J. Phys. Chem. A 110(15), 5164–5172 (2006)Google Scholar
  76. 76.
    A. Acocella, M. de Simone, F. Evangelista, M. Coreno, P. Rudolf, F. Zerbetto, Time-dependent quantum simulation of coronene photoemission spectra. Phys. Chem. Chem. Phys 18, 13604 (2016)Google Scholar
  77. 77.
    D. Pines, P. Nozières, The Theory of Quantum Liquids: Normal Fermi Liquids, vol. 1 (WA Benjamin, San Francisco, 1966)Google Scholar
  78. 78.
    G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)Google Scholar
  79. 79.
    E. Runge, E.K. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997 (1984)Google Scholar
  80. 80.
    M. Petersilka, U. Gossmann, E. Gross, Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 76(8), 1212 (1996)Google Scholar
  81. 81.
    H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou, Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett. 58(12), 1212 (1987)Google Scholar
  82. 82.
    J. Kortus, O.V. Dolgov, R.K. Kremer, A.A. Golubov, Band filling and interband scattering effects in MgB\(_2\): carbon versus aluminum doping. Phys. Rev. Lett. 94(2), 027002 (2005)Google Scholar
  83. 83.
    R.P.S.M. Lobo, J. Tu, E. Choi, H. Kim, W.N. Kang, S. Lee, G.L. Carr. Transient infrared photoreflectance study of superconducting MgB\(_2\): evidence for multiple gaps and interband scattering. arXiv preprint cond-mat/0404708. (2004)Google Scholar
  84. 84.
    R.P.S.M. Lobo, M. Elsen, P. Monod, J.J. Tu, E. Choi, H. Kim, W.N. Kang, S. Lee, R.J. Cava, G.L. Carr, Interband scattering in\({\text{ MgB }}_{2}\), in New Challenges in Superconductivity: Experimental Advances and Emerging Theories (Springer, Berlin, 2005), pp. 243–248Google Scholar
  85. 85.
    K. Voelker, V.I. Anisimov, T.M. Rice, Acoustic plasmons in MgB\(_2\). arXiv preprint cond-mat/0103082 (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations