Strong Interactions and Correlations
Chapter
First Online:
Abstract
One of the most intriguing yet challenging fields of research in contemporary condensed matter physics is the investigation of many-body effects in strongly correlated quantum systems. This class of materials provides an excellent playground for discovering exotic phenomena involving charge, lattice, spin and orbital degrees of freedom and leading to extraordinarily varied chemical and physical properties. Understanding electronic correlations in prototypical systems like cuprates and manganites can pave the route to the potential design and engineering of novel materials with tailored functionalities.
References
- 1.H. Bethe, Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. 392(17), 55–129 (1928)CrossRefGoogle Scholar
- 2.A. Sommerfeld, I. Zusammenfassende Vorträge zum Hauptthema: Die Arten Chemischer Bindung und der Bau der Atome. Zur Frage nach der Bedeutung der Atommodelle. Z. Elktrochem. Angew. P, 34(9):426–430 (1928)Google Scholar
- 3.M.F. Bloch, Bemerkung zur Elektronentheorie des Ferromagnetismus und der Elektrischen Leitfähigkeit. Z. Phys. 57(7–8), 545–555 (1929)ADSMATHCrossRefGoogle Scholar
- 4.J.H. de Boer, E.J.W. Verwey, Semi-conductors with partially and with completely filled 3d-lattice bands. Proc. Phys. Soc. 49(4S), 59 (1937)ADSCrossRefGoogle Scholar
- 5.N.F. Mott, R. Peierls, Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49(4S), 72 (1937)ADSCrossRefGoogle Scholar
- 6.L.D. Landau, The theory of a Fermi liquid. Sov. Phys. JETP-USSR 3(6), 920–925 (1957)MathSciNetMATHGoogle Scholar
- 7.J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175 (1957)Google Scholar
- 8.G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys.-JETP Engl. Transl. 11(3) (1960). (United States)Google Scholar
- 9.J.G. Bednorz, K.A. Müller, Possible high T\(_C\) superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)ADSCrossRefGoogle Scholar
- 10.S. Jin, M. ThH Tiefel, R.A. McCormack, R. Fastnacht, L.H. Chen Ramesh, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264(5157), 413–414 (1994)Google Scholar
- 11.Z.X. Shen, A. Lanzara, S. Ishihara, N. Nagaosa, Role of the electron-phonon interaction in the strongly correlated cuprate superconductors. Phil. Mag. B 82(13), 1349–1368 (2002)ADSCrossRefGoogle Scholar
- 12.D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, K. Haule, Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011)ADSCrossRefGoogle Scholar
- 13.A.J. Millis, Optical conductivity and correlated electron physics, in Strong Interactions in Low Dimensions (Springer, Dordrecht, 2004), pp. 195–235Google Scholar
- 14.A. Damascelli, Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004(T109), 61 (2004)CrossRefGoogle Scholar
- 15.L.J.P. Ament, M. Van Veenendaal, T.P. Devereaux, J.P. Hill, J. Van Den Brink, Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83(2), 705 (2011)ADSCrossRefGoogle Scholar
- 16.P. Drude, Zur Elektronentheorie der Metalle. Ann. Phys. 306(3), 566–613 (1900)CrossRefGoogle Scholar
- 17.Y. Toyozawa, Optical Processes in Solids (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
- 18.G.D. Mahan, Many-Particle Physics (Springer Science & Business Media, 2013)Google Scholar
- 19.A.S. Alexandrov, Polarons in Advanced Materials, vol. 103 (Springer Science & Business Media, 2008)Google Scholar
- 20.D. Emin, Polarons (Cambridge University Press, 2013)Google Scholar
- 21.J.P. Carbotte, Properties of boson-exchange superconductors. Rev. Mod. Phys. 62(4), 1027 (1990)ADSCrossRefGoogle Scholar
- 22.W.L. McMillan, Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)ADSCrossRefGoogle Scholar
- 23.Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128(31), 10012–10013 (2006)CrossRefGoogle Scholar
- 24.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)ADSCrossRefGoogle Scholar
- 25.A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525(7567), 73–76 (2015)ADSCrossRefGoogle Scholar
- 26.I. Errea, M. Calandra, C.J. Pickard, J. Nelson, R.J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, F. Mauri, High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015)ADSCrossRefGoogle Scholar
- 27.A. Bussmann-Holder, J. Köhler, M.H. Whangbo, A. Bianconi, A. Simon, High temperature superconductivity in sulfur hydride under ultrahigh pressure: a complex superconducting phase beyond conventional BCS. Novel Supercond. Mat. 2(1), 37–42 (2016)Google Scholar
- 28.A.Y. Liu, I. Mazin, J. Kortus, Beyond Eliashberg superconductivity in MgB\(_2\): anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87(8), 087005 (2001)ADSCrossRefGoogle Scholar
- 29.Y. Wang, T. Plackowski, A. Junod, Specific heat in the superconducting and normal state (2–300 K, 0–16 T), and magnetic susceptibility of the 38 K superconductor MgB\(_2\): evidence for a multicomponent gap. Physica C 355(3), 179–193 (2001)ADSCrossRefGoogle Scholar
- 30.S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.C. Wang, H. Ding, A. Kaminski, J.C. Campuzano, S. Sasaki et al., The origin of multiple superconducting gaps in MgB\(_2\). Nature 423(6935), 65–67 (2003)ADSCrossRefGoogle Scholar
- 31.M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, D.G. Hinks, W.N. Kang, E. Choi, Hyun J. Kim et al., Two-band superconductivity in MgB\(_2\). Phys. Rev. Lett. 89(18), 187002 (2002)ADSCrossRefGoogle Scholar
- 32.M.R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S.M. Kazakov, J. Karpinski, Ø. Fischer, Vortex imaging in the \(\pi \) band of magnesium diboride. Phys. Rev. Lett. 89(18), 187003 (2002)ADSCrossRefGoogle Scholar
- 33.X.K. Chen, M.J. Konstantinović, J.C. Irwin, D.D. Lawrie, J.P. Franck, Evidence for two superconducting gaps in MgB\(_2\). Phys. Rev. Lett. 87(15), 157002 (2001)ADSCrossRefGoogle Scholar
- 34.A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, J. Hu, R.J. Hemley, H.-K. Mao, G. Lapertot, S.L. Budko, P.C. Canfield, Raman spectrum and lattice parameters of MgB\(_2\) as a function of pressure. Phys. Rev. B 64(10), 100509 (2001)ADSCrossRefGoogle Scholar
- 35.J.W. Quilty, S. Lee, A. Yamamoto, S. Tajima, Superconducting gap in MgB\(_2\): electronic Raman scattering measurements of single crystals. Phys. Rev. Lett. 88(8), 087001 (2002)ADSCrossRefGoogle Scholar
- 36.J.W. Quilty, S. Lee, S. Tajima, A. Yamanaka, c-Axis Raman scattering spectra of MgB\(_2\): observation of a dirty-limit gap in the \(\pi \) bands. Phys. Rev. Lett. 90(20), 207006 (2003)ADSCrossRefGoogle Scholar
- 37.G. Blumberg, A. Mialitsin, B.S. Dennis, N.D. Zhigadlo, J. Karpinski, Multi-gap superconductivity in MgB\(_2\): magneto-Raman spectroscopy. Physica C 456(1), 75–82 (2007)ADSCrossRefGoogle Scholar
- 38.V. Guritanu, A.B. Kuzmenko, D. van der Marel, S.M. Kazakov, N.D. Zhigadlo, J. Karpinski, Anisotropic optical conductivity and two colors of MgB\(_2\). Phys. Rev. B 73(10), 104509 (2006)ADSCrossRefGoogle Scholar
- 39.J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Superconductivity of metallic boron in MgB\(_2\). Phys. Rev. Lett. 86(20), 4656 (2001)ADSCrossRefGoogle Scholar
- 40.K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB\(_2\) and AlB\(_2\). Phys. Rev. Lett. 86(25), 5771 (2001)ADSCrossRefGoogle Scholar
- 41.Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, electron-phonon interaction in the normal and superconducting states of MgB\(_2\). Phys. Rev. B 64(2), 020501 (2001)ADSCrossRefGoogle Scholar
- 42.K. Kunc, I. Loa, K. Syassen, R.K. Kremer, K. Ahn, MgB\(_2\) under pressure: phonon calculations, Raman spectroscopy, and optical reflectance. J. Phys. Cond. Matt. 13(44), 9945 (2001)ADSCrossRefGoogle Scholar
- 43.H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, The origin of the anomalous superconducting properties of MgB\(_2\). Nature 418(6899), 758–760 (2002)ADSCrossRefGoogle Scholar
- 44.T. Yildirim, O. Gülseren, J.W. Lynn, C.M. Brown, T.J. Udovic, Q. Huang, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Slusky, T. He, M.K. Haas, P. Khalifah, K. Inumaru, R.J. Cava, Giant anharmonicity and nonlinear electron-phonon coupling in MgB\(_2\): a combined first-principles calculation and neutron scattering study. Phys. Rev. Lett. 87(3), 037001 (2001)ADSCrossRefGoogle Scholar
- 45.Y.Q. Cai, P. Chow, O.D. Restrepo, Y. Takano, K. Togano, H. Kito, H. Ishii, C.C. Chen, K.S. Liang, C.T. Chen et al., Low-energy charge-density excitations in MgB\(_2\): striking interplay between single-particle and collective behavior for large momenta. Phys. Rev. Lett. 97(17), 176402 (2006)ADSCrossRefGoogle Scholar
- 46.L.D. Landau, S.I. Pekar, Polaron effective mass. Zh. Eksp. Teor. Fiz. 18(5), 419 (1948)Google Scholar
- 47.H. Fröhlich, Electrons in lattice fields. Adv. Phys. 3(11), 325–361 (1954)ADSMATHCrossRefGoogle Scholar
- 48.T. Holstein, Studies of polaron motion: part I the molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)ADSMATHCrossRefGoogle Scholar
- 49.T. Holstein, Studies of polaron motion: part II the small polaron. Ann. Phys. 8(3), 343–389 (1959)ADSMATHCrossRefGoogle Scholar
- 50.R.P. Feynman, Slow electrons in a polar crystal. Phys. Rev. 97(3), 660 (1955)ADSMATHCrossRefGoogle Scholar
- 51.A.M. Stoneham, J. Gavartin, A.L. Shluger, A.V. Kimmel, G. Aeppli, C. Renner et al., Trapping, self-trapping and the polaron family. J. Phys-Condens. Mat. 19(25), 255208 (2007)ADSCrossRefGoogle Scholar
- 52.P.B. Allen, V. Perebeinos, Self-trapped exciton and Franck-Condon spectra predicted in LaMnO\(_3\). Phys. Rev. Lett. 83(23), 4828 (1999)ADSCrossRefGoogle Scholar
- 53.J. Callaway, D.P. Chen, D.G. Kanhere, Q. Li, Pairing in finite cluster models. Physica B 163(1–3), 127–128 (1990)ADSCrossRefGoogle Scholar
- 54.C.J. Thompson, T. Matsubara, A unified statistical mechanical approach to high-temperature superconductivity, in Studies of High Temperature Superconductors (1991)Google Scholar
- 55.A. Macridin, G.A. Sawatzky, M. Jarrell, Two-dimensional Hubbard-Holstein bipolaron. Phys. Rev. B 69(24), 245111 (2004)ADSCrossRefGoogle Scholar
- 56.A.S. Mishchenko, N. Nagaosa, Z.-X. Shen, G. De Filippis, V. Cataudella, T.P. Devereaux, C. Bernhard, K.W. Kim, J. Zaanen, Charge dynamics of doped holes in high T\(_c\) cuprate superconductors: a clue from optical conductivity. Phys. Rev. Lett. 100(16), 166401 (2008)ADSCrossRefGoogle Scholar
- 57.G. De Filippis, V. Cataudella, E.A. Nowadnick, T.P. Devereaux, A.S. Mishchenko, N. Nagaosa, Quantum dynamics of the Hubbard-Holstein model in equilibrium and nonequilibrium: application to pump-probe phenomena. Phys. Rev. Lett. 109(17), 176402 (2012)ADSCrossRefGoogle Scholar
- 58.J.P. Franck, D.M. Ginsberg, Physical properties of high temperature superconductors IV. World Sci, Singapore, p. 189 (1994)Google Scholar
- 59.H.J.A. Molegraaf, C. Presura, D. Van Der Marel, P.H. Kes, M. Li, Superconductivity-induced transfer of in-plane spectral weight in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 295(5563), 2239–2241 (2002)ADSCrossRefGoogle Scholar
- 60.J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375(6532), 561–563 (1995)ADSCrossRefGoogle Scholar
- 61.A. Bianconi, N.L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, T. Ito, Determination of the local lattice distortions in the CuO\(_2\) plane of La\(_{1.85}\)Sr\(_{0.15}\)CuO\(_4\). Phys. Rev. Lett. 76(18), 3412 (1996)ADSCrossRefGoogle Scholar
- 62.V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C.T. Lin, B. Keimer, Electronic liquid crystal state in the high-temperature superconductor YBa\(_2\)Cu\(_3\)O\(_{6.45}\). Science 319(5863), 597–600 (2008)CrossRefGoogle Scholar
- 63.M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, A. Yazdani, Local ordering in the pseudogap state of the high-T\(_c\) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 303(5666), 1995–1998 (2004)ADSCrossRefGoogle Scholar
- 64.G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D.G. Hawthorn, F. He, Long-range incommensurate charge fluctuations in (Y, Nd)Ba\(_2\)Cu\(_3\)O\(_{6+x}\). Science 303(6096), 821–825 (2012)ADSCrossRefGoogle Scholar
- 65.M. Hashimoto, E.A. Nowadnick, R.-H. He, I.M. Vishik, B. Moritz, Y. He, K. Tanaka, R.G. Moore, D. Lu, Y. Yoshida, M. Ishikado, T. Sasagawa, K. Fujita, S. Ishida, S. Uchida, H. Eisaki, Z. Hussain, T.P. Devereaux, Z.-X. Shen, Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Nat. Mat. 14(1), 37–42 (2015)CrossRefGoogle Scholar
- 66.J. Chang, E. Blackburn, A.T. Holmes, N.B. Christensen, J. Larsen, J. Mesot, R. Liang, D.A. Bonn, W.N. Hardy, A. Watenphul, Direct observation of competition between superconductivity and charge density wave order in YBa\(_2\)Cu\(_3\)O\(_{6.67}\). Nat. Phys. 8(12), 871–876 (2012)CrossRefGoogle Scholar
- 67.W.W. Warren Jr., R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell, G. Dabbagh, Cu spin dynamics and superconducting precursor effects in planes above T\(_C\) in YBa\(_2\)Cu\(_3\)O\(_{6.7}\). Phys. Rev. Lett. 62(10), 1193 (1989)ADSCrossRefGoogle Scholar
- 68.H. Alloul, T. Ohno, P. Mendels, \(^{89}\)Y NMR evidence for a Fermi-liquid behavior in YBa\(_2\)Cu\(_3\)O\(_{6+x}\). Phys. Rev. Lett. 63(16), 1700 (1989)ADSCrossRefGoogle Scholar
- 69.M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, K.C. Ott, Cu and O NMR studies of the magnetic properties of YBa\(_2\)Cu\(_3\)O\(_{6.63}\) (T\(_C\) = 62 K). Phys. Rev. B 43(1), 247 (1991)ADSCrossRefGoogle Scholar
- 70.J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Electronic specific heat of YBa\(_2\)Cu\(_3\)O\(_{6+x}\) from 1.8 to 300 K. Phys. Rev. Lett. 71(11), 1740 (1993)ADSCrossRefGoogle Scholar
- 71.K.K. Gomes, A.N. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani, Visualizing pair formation on the atomic scale in the high-T\(_C\) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Nature 447(7144), 569–572 (2007)ADSCrossRefGoogle Scholar
- 72.A. Yazdani, Visualizing pair formation on the atomic scale and the search for the mechanism of superconductivity in High-T\(_C\) cuprates. J. Phys. Cond. Matt. 21(16), 164214 (2009)ADSCrossRefGoogle Scholar
- 73.M. Shi, A. Bendounan, E. Razzoli, S. Rosenkranz, M.R. Norman, J.C. Campuzano, J. Chang, M.Månsson, Y. Sassa, T. Claesson, O. Tjernberg, L. Patthey, N. Momono, M. Oda, M. Ido, S. Guerrero, C. Mudry, J. Mesot, Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates. EPL (Europhys. Lett.), 88(2):27008 (2009)Google Scholar
- 74.T. Kondo, Y. Hamaya, A.D. Palczewski, T. Takeuchi, J.S. Wen, Z.J. Xu, G. Gu, J. Schmalian, A. Kaminski, Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates. Nat. Phys. 7(1), 21–25 (2011)CrossRefGoogle Scholar
- 75.T. Kondo, W. Malaeb, Y. Ishida, T. Sasagawa, H. Sakamoto, T. Takeuchi, T. Tohyama, S. Shin, Point nodes persisting far beyond T\(_{\rm {C}}\) in Bi2212. Nat. Comm. 6, 7699 (2015)Google Scholar
- 76.N. Hussey, Phenomenology of the normal state in-plane transport properties of high-\({\rm {T}}_{\rm {C}}\) cuprates. J. Phys. Cond. Matt. 20(12), 123201 (2008)Google Scholar
- 77.J. Chang, M. Maansson, S. Pailhes, T. Claesson, O.J. Lipscombe, S.M. Hayden, L. Patthey, O. Tjernberg, J. Mesot. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La\(_{2-x}\)Sr\(_x\)CuO\(_4\). Nat. Comm. 4 (2013)Google Scholar
- 78.S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, S. Tajima, Optical spectra of La\(_{2-x}\)Sr\(_x\)CuO\(_4\): effect of carrier doping on the electronic structure of the CuO\(_2\) plane. Phys. Rev. B 43(10), 7942 (1991)ADSCrossRefGoogle Scholar
- 79.T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, N. Koshizuka, Evidence for quantum critical behavior in the optimally doped cuprate Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 285(5436), 2110–2113 (1999)CrossRefGoogle Scholar
- 80.S. Sachdev, Where is the quantum critical point in the cuprate superconductors? Phys. Stat. Sol. (b) 247(3), 537–543 (2010)ADSCrossRefGoogle Scholar
- 81.J.P. Falck, A. Levy, M.A. Kastner, R.J. Birgeneau, Charge-transfer spectrum and its temperature dependence in La\(_2\)CuO\(_4\). Phys. Rev. Lett. 69(7), 1109 (1992)ADSCrossRefGoogle Scholar
- 82.A.J. Millis, A. Zimmers, R.P.S.M. Lobo, N. Bontemps, C.C. Homes, Mott physics and the optical conductivity of electron-doped cuprates. Phys. Rev. B 72(22), 224517 (2005)ADSCrossRefGoogle Scholar
- 83.N. Hussey, High-temperature superconductivity: isolating the gap. Nat. Phys. 12(4), 290–291 (2016)CrossRefGoogle Scholar
- 84.C. Weber, K. Haule, G. Kotliar, Strength of correlations in electron-and hole-doped cuprates. Nat. Phys. 6(8), 574–578 (2010)CrossRefGoogle Scholar
- 85.C. Weber, K. Haule, G. Kotliar, Apical oxygens and correlation strength in electron-and hole-doped copper oxides. Phys. Rev. B 82(12), 125107 (2010)ADSCrossRefGoogle Scholar
- 86.K. McElroy, J. Lee, J.A. Slezak, D.-H. Lee, H. Eisaki, S. Uchida, J.C. Davis, Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 309(5737), 1048–1052 (2005)ADSCrossRefGoogle Scholar
- 87.D.J. Scalapino, E. Loh, J.E. Hirsch, \(d\)-Wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986)ADSCrossRefGoogle Scholar
- 88.R. Haslinger, A.V. Chubukov, A. Abanov, Spectral function and conductivity in the normal state of the cuprates: a spin fluctuation study. Phys. Rev. B 63, 020503 (2000)CrossRefGoogle Scholar
- 89.C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989)ADSCrossRefGoogle Scholar
- 90.J.P. Carbotte, E. Schachinger, D.N. Basov, Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401(6751), 354–356 (1999)ADSCrossRefGoogle Scholar
- 91.S.V. Dordevic, C.C. Homes, J.J. Tu, T. Valla, M. Strongin, P.D. Johnson, G.D. Gu, D.N. Basov, Extracting the electron-boson spectral function \({\alpha }^{2}F(\omega )\) from infrared and photoemission data using inverse theory. Phys. Rev. B 71, 104529 (2005)ADSCrossRefGoogle Scholar
- 92.P.V. Bogdanov, A. Lanzara, S.A. Kellar, X.J. Zhou, E.D. Lu, W.J. Zheng, G. Gu, J.I. Shimoyama, K. Kishio, H. Ikeda, R. Yoshizaki, Z. Hussain, Z.X. Shen, Evidence for an energy scale for quasiparticle dispersion in \({\rm {Bi}}_{2}{\rm {Sr}}_{2}{\rm {CaCu}}_{2}{\rm {O}}_{8}\). Phys. Rev. Lett. 85, 2581–2584 (2000)Google Scholar
- 93.A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio et al., Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412(6846), 510–514 (2001)ADSCrossRefGoogle Scholar
- 94.M.R. Norman, A.V. Chubukov, High-frequency behavior of the infrared conductivity of cuprates. Phys. Rev. B 73, 140501 (2006)ADSCrossRefGoogle Scholar
- 95.P.W. Anderson, Is there glue in cuprate superconductors? Science 316(5832), 1705–1707 (2007)CrossRefGoogle Scholar
- 96.P. Phillips, Mottness. Ann. Phys. 321(7), 1634–1650 (2006)ADSMATHCrossRefGoogle Scholar
- 97.A.V. Boris, N.N. Kovaleva, O.V. Dolgov, T. Holden, C.T. Lin, B. Keimer, C. Bernhard, In-plane spectral weight shift of charge carriers in YBa\(_2\)Cu\(_3\)O\(_{6.9}\). Science 304(5671), 708–710 (2004)ADSCrossRefGoogle Scholar
- 98.T.D. Stanescu, P. Phillips, Pseudogap in doped mott insulators is the near-neighbor analogue of the Mott gap. Phys. Rev. Lett. 91(1), 017002 (2003)ADSCrossRefGoogle Scholar
- 99.F. Carbone, A.B. Kuzmenko, H.J. Molegraaf, E. Van Heumen, V. Lukovac, F. Marsiglio, D. van der Marel, K. Haule, G. Kotliar, H. Berger, Doping dependence of the redistribution of optical spectral weight in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Phys. Rev. B 74(6), 064510 (2006)ADSCrossRefGoogle Scholar
- 100.M. Rübhausen, A. Gozar, M.V. Klein, P. Guptasarma, D.G. Hinks, Superconductivity-induced optical changes for energies of 100\(\delta \) in the cuprates. Phys. Rev. B 63(22), 224514 (2001)ADSCrossRefGoogle Scholar
- 101.J. Bäckström, D. Budelmann, R. Rauer, M. Rübhausen, H. Rodriguez, H. Adrian, Optical properties of YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) and PrBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) films: high-energy correlations and metallicity. Phys. Rev. B 70(17), 174502 (2004)ADSCrossRefGoogle Scholar
- 102.M. Tinkham. Introduction to Superconductivity: (Dover Books on Physics), vol. I (2004)Google Scholar
- 103.A.J. Leggett, Where is the energy saved in cuprate superconductivity? J. Phys. Chem. Solids 59(10), 1729–1732 (1998)ADSCrossRefGoogle Scholar
- 104.A.J. Leggett, A midinfrared scenario for cuprate superconductivity. Proc. Natl. Acad. Sci. 96(15), 8365–8372 (1999)ADSCrossRefGoogle Scholar
- 105.A.J. Leggett, Cuprate superconductivity: dependence of T\(_C\) on the c-axis layering structure. Phys. Rev. Lett. 83(2), 392 (1999)ADSCrossRefGoogle Scholar
- 106.J. Levallois, M.K. Tran, D. Pouliot, C.N. Presura, L.H. Greene, J.N. Eckstein, J. Uccelli, E. Giannini, G.D. Gu, A.J. Leggett, D. van der Marel, Temperature-dependent ellipsometry measurements of partial Coulomb energy in superconducting cuprates. Phys. Rev. X 6, 031027 (2016)Google Scholar
- 107.N.N. Bogoliubov, V.V. Tolmachev, D.V. Shirkov, A new method in the theory of superconductivity, in Academy of Sciences of the USSR (1958)Google Scholar
- 108.B. Mansart, J. Lorenzana, A. Mann, A. Odeh, M. Scarongella, M. Chergui, F. Carbone, Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy. Proc. Natl. Acad. Sci. 110(12), 4539–4544 (2013)ADSCrossRefGoogle Scholar
- 109.J. Lorenzana, B. Mansart, A. Mann, A. Odeh, M. Chergui, F. Carbone, Investigating pairing interactions with coherent charge fluctuation spectroscopy. Eur. Phys. J. Spec. Top. 222(5), 1223–1239 (2013)CrossRefGoogle Scholar
- 110.R.A. Kaindl, M. Woerner, T. Elsaesser, D.C. Smith, J.F. Ryan, G.A. Farnan, M.P. McCurry, D.G. Walmsley, Ultrafast mid-infrared response of YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\). Science 287(5452), 470–473 (2000)ADSCrossRefGoogle Scholar
- 111.A. Pashkin, M. Porer, M. Beyer, Kyung W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, Femtosecond response of quasiparticles and phonons in superconducting YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) studied by wideband terahertz spectroscopy. Phys. Rev. Lett. 105(6), 067001 (2010)ADSCrossRefGoogle Scholar
- 112.D. Khomskii, Transition Metal Compounds (Cambridge University Press, 2014)Google Scholar
- 113.Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000)ADSCrossRefGoogle Scholar
- 114.N.N. Kovaleva, A.V. Boris, C. Bernhard, A. Kulakov, A. Pimenov, A.M. Balbashov, G. Khaliullin, B. Keimer, Spin-controlled Mott-Hubbard bands in LaMnO\(_3\) probed by optical ellipsometry. Phys. Rev. Lett. 93(14), 147204 (2004)ADSCrossRefGoogle Scholar
- 115.A.S. Moskvin, A.A. Makhnev, L.V. Nomerovannaya, N.N. Loshkareva, A.M. Balbashov, Interplay of p-d and d-d charge transfer transitions in rare-earth perovskite manganites. Phys. Rev. B 82(3), 035106 (2010)ADSCrossRefGoogle Scholar
- 116.J. Zaanen, G.A. Sawatzky, J.W. Allen, Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55(4), 418 (1985)ADSCrossRefGoogle Scholar
- 117.J.F. Lawler, J.G. Lunney, J.M.D. Coey, Magneto-optic Faraday effect in (La\(_{1-x}\)Ca\(_x\))MnO\(_3\) films. Appl. Phys. Lett. 65(23), 3017–3018 (1994)ADSCrossRefGoogle Scholar
- 118.N.N. Kovaleva, K.I. Kugel, Z. Pot\({\mathring{{\rm{u}}}}\)ček, O.E. Kusmartseva, N.S. Goryachev, Z. Bryknar, E.I. Demikhov, V.A. Trepakov, A. Dejneka, F.V. Kusmartsev, A.M. Stoneham, Optical evidence of quantum rotor orbital excitations in orthorhombic manganites. J. Exp. Theor. Phys. 122(5), 890–901 (2016)ADSCrossRefGoogle Scholar
- 119.T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Distorted perovskite with e\(_g^1\) configuration as a frustrated spin system. Phys. Rev. B 68(6), 060403 (2003)ADSCrossRefGoogle Scholar
- 120.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426(6962), 55–58 (2003)ADSCrossRefGoogle Scholar
- 121.T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92(25), 257201 (2004)ADSCrossRefGoogle Scholar
- 122.M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Magnetic inversion symmetry breaking and ferroelectricity in TbMnO\(_3\). Phys. Rev. Lett. 95(8), 087206 (2005)ADSCrossRefGoogle Scholar
- 123.A.B. Sushkov, R. Valdés Aguilar, S. Park, S-W. Cheong, H.D. Drew. Electromagnons in multiferroic \({{\rm {YMn}}}_{2}{{\rm {O}}}_{5}\) and \({\rm {TbMn}}_{2}{{\rm {O}}}_{5}\). Phys. Rev. Lett. 98, 027202 (2007)Google Scholar
- 124.Y. Takahashi, N. Kida, Y. Yamasaki, J. Fujioka, T. Arima, R. Shimano, S. Miyahara, M. Mochizuki, N. Furukawa, Y. Tokura, Evidence for an electric-dipole active continuum band of spin excitations in multiferroic \({{\rm {TbMnO}}}_{3}\). Phys. Rev. Lett. 101, 187201 (2008)Google Scholar
- 125.A. Pimenov, A.A. Mukhin, V.Y. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2(2), 97–100 (2006)CrossRefGoogle Scholar
- 126.P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, M.-A. Measson, H. Sakata, Magnetoelectric excitations in multiferroic TbMnO\(_3\) by Raman scattering. Phys. Rev. B 81, 054428 (2010)ADSCrossRefGoogle Scholar
- 127.P. Rovillain, J. Liu, M. Cazayous, Y. Gallais, M.-A. Measson, H. Sakata, A. Sacuto, Electromagnon and phonon excitations in multiferroic TbMnO\(_3\). Phys. Rev. B 86, 014437 (2012)ADSCrossRefGoogle Scholar
- 128.D. Polli, M. Rini, S. Wall, R.W. Schoenlein, Y. Tomioka, Y. Tokura, G. Cerullo, A. Cavalleri, Coherent orbital waves in the photo-induced insulator-metal dynamics of a magnetoresistive manganite. Nat. Mat. 6(9), 643–647 (2007)CrossRefGoogle Scholar
- 129.S. Wall, D. Prabhakaran, A.T. Boothroyd, A. Cavalleri, Ultrafast coupling between light, coherent lattice vibrations, and the magnetic structure of semicovalent LaMnO\(_3\). Phys. Rev. Lett. 103(9), 097402 (2009)ADSCrossRefGoogle Scholar
- 130.I.P. Handayani, R.I. Tobey, J. Janusonis, D.A. Mazurenko, N. Mufti, A.A. Nugroho, M.O. Tjia, T.T.M. Palstra, P.H.M. van Loosdrecht, Dynamics of photo-excited electrons in magnetically ordered TbMnO\(_3\). J. Phys-Condens. Mat. 25(11), 116007 (2013)ADSCrossRefGoogle Scholar
- 131.P. Beaud, A. Caviezel, S.O. Mariager, L. Rettig, G. Ingold, C. Dornes, S.W. Huang, J.A. Johnson, M. Radovic, T. Huber et al., A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mat. 13(10), 923–927 (2014)CrossRefGoogle Scholar
- 132.J.A. Johnson, T. Kubacka, M.C. Hoffmann, C. Vicario, S. de Jong, P. Beaud, S. Grübel, S.-W. Huang, L. Huber, Y.W. Windsor, E.M. Bothschafter, L. Rettig, M. Ramakrishnan, A. Alberca, L. Patthey, Y.-D. Chuang, J.J. Turner, G.L. Dakovski, W.-S. Lee, M.P. Minitti, W. Schlotter, R.G. Moore, C.P. Hauri, S.M. Koohpayeh, V. Scagnoli, G. Ingold, S.L. Johnson, U. Staub, Magnetic order dynamics in optically excited multiferroic \({{\rm {TbMn}}} {{\rm {O}}}_{3}\). Phys. Rev. B 92, 184429 (2015)Google Scholar
- 133.T. Ogasawara, T. Kimura, T. Ishikawa, M. Kuwata-Gonokami, Y. Tokura, Dynamics of photoinduced melting of charge/orbital order in a layered manganite La\(_{0.5}\)Sr\(_{1.5}\)MnO\(_4\). Phys. Rev. B 63(11), 113105 (2001)ADSCrossRefGoogle Scholar
- 134.M. Matsubara, Y. Okimoto, T. Ogasawara, Y. Tomioka, H. Okamoto, Y. Tokura, Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite \({{\rm {Gd}}}_{0.55}{{\rm {Sr}}}_{0.45}{{\rm {MnO}}}_{3}\). Phys. Rev. Lett. 99, 207401 (2007)Google Scholar
- 135.P. Beaud, S.L. Johnson, E. Vorobeva, U. Staub, R.A. De Souza, C.J. Milne, Q.X. Jia, G. Ingold, Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. Phys. Rev. Lett. 103(15), 155702 (2009)ADSCrossRefGoogle Scholar
- 136.K.B. Tolpygo, Physical properties of the salt lattice constructed from deforming ions. J. Exp. Theor. Phys. (USSR) 20(6), 497–509 (1950)Google Scholar
- 137.S. Savasta, O. Di Stefano, V. Savona, W. Langbein, Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94(24), 246401 (2005)ADSCrossRefGoogle Scholar
- 138.T.C.H. Liew, V. Savona, Single photons from coupled quantum modes. Phys. Rev. Lett. 104(18), 183601 (2010)ADSCrossRefGoogle Scholar
- 139.K.G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T.C.H. Liew, V. Savona, A.V. Kavokin, R. André, B. Deveaud-Plédran, Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106(11), 115301 (2011)ADSCrossRefGoogle Scholar
- 140.P.W. Anderson, More is different. Science 177(4047), 393–396 (1972)ADSCrossRefGoogle Scholar
- 141.Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H. Castro Neto, C.N. Lau, F. Keilmann, D.N. Basov, D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405), 82–85 (2012)ADSCrossRefGoogle Scholar
- 142.P. Abbamonte, T. Graber, J.P. Reed, S. Smadici, C.-L. Yeh, A. Shukla, J.-P. Rueff, W. Ku, Dynamical reconstruction of the exciton in LiF with inelastic x-ray scattering. Proc. Natl. Acad. Sci. 105(34), 12159–12163 (2008)ADSCrossRefGoogle Scholar
- 143.M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, A. Cavalleri, Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7(11), 854–856 (2011)CrossRefGoogle Scholar
- 144.X. Zhang, T. Liu, M.E. Flatté, H.X. Tang, Electric-field coupling to spin waves in a centrosymmetric ferrite. Phys. Rev. Lett. 113, 037202 (2014)ADSCrossRefGoogle Scholar
- 145.S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
- 146.R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874 (1957)ADSMathSciNetCrossRefGoogle Scholar
- 147.B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Act. 4, 299–304 (1983)CrossRefGoogle Scholar
- 148.S.K. Saikin, A. Eisfeld, S. Valleau, A. Aspuru-Guzik, Photonics meets excitonics: natural and artificial molecular aggregates. Nanophotonics 2(1), 21–38 (2013)ADSCrossRefGoogle Scholar
- 149.M. Först, R.I. Tobey, S. Wall, H. Bromberger, V. Khanna, A.L. Cavalieri, Y.-D. Chuang, W.S. Lee, R. Moore, W.F. Schlotter, J.J. Turner, O. Krupin, M. Trigo, H. Zheng, J.F. Mitchell, S.S. Dhesi, J.P. Hill, A. Cavalleri, Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104 (2011)ADSCrossRefGoogle Scholar
- 150.V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D Appl. Phys. 43(26), 264001 (2010)ADSCrossRefGoogle Scholar
- 151.T. Feurer, N.S. Stoyanov, D.W. Ward, J.C. Vaughan, E.R. Statz, K.A. Nelson, Terahertz polaritonics. Annu. Rev. Mater. Res. 37, 317–350 (2007)ADSCrossRefGoogle Scholar
- 152.E. Saitoh, S. Okamoto, K.T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, Y. Tokura, Observation of orbital waves as elementary excitations in a solid. Nature 410(6825), 180–183 (2001)ADSCrossRefGoogle Scholar
- 153.Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122(1), 345 (1961)ADSCrossRefGoogle Scholar
- 154.W.L. McMillan, Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition. Phys. Rev. B 14(4), 1496 (1976)ADSCrossRefGoogle Scholar
- 155.P.W. Anderson, Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963)ADSMathSciNetMATHCrossRefGoogle Scholar
- 156.P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508 (1964)ADSMathSciNetCrossRefGoogle Scholar
- 157.A.J. Leggett, Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36(5), 901–930 (1966)ADSCrossRefGoogle Scholar
- 158.D. Pines, D. Bohm, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85(2), 338 (1952)ADSMathSciNetMATHCrossRefGoogle Scholar
- 159.D. van der Marel, A. Tsvetkov, Transverse optical plasmons in layered superconductors. Czech J. Phys. 46(6), 3165–3168 (1996)CrossRefGoogle Scholar
- 160.W. Hayes, R. Loudon, Scattering of Light by Crystals (Courier Corporation, 2012)Google Scholar
- 161.S. Galambosi, J.A. Soininen, A. Mattila, S. Huotari, S. Manninen, G. Vankó, N.D. Zhigadlo, J. Karpinski, K. Hämäläinen, Inelastic x-ray scattering study of collective electron excitations in MgB\(_2\). Phys. Rev. B 71(6), 060504 (2005)ADSCrossRefGoogle Scholar
- 162.M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002)Google Scholar
- 163.Y. U. Peter and M. Cardona. Fundamentals of Semiconductors: Physics and Materials Properties (Springer Science & Business Media, 2010)Google Scholar
- 164.L.D. Landau, On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 10, 25 (1946)MathSciNetMATHGoogle Scholar
- 165.A. Toschi, M. Capone, M. Ortolani, P. Calvani, S. Lupi, C. Castellani, Temperature dependence of the optical spectral weight in the cuprates: role of electron correlations. Phys. Rev. Lett. 95, 097002 (2005)ADSCrossRefGoogle Scholar
- 166.D. Nicoletti, O. Limaj, P. Calvani, G. Rohringer, A. Toschi, G. Sangiovanni, M. Capone, K. Held, S. Ono, Y. Ando, S. Lupi, High-temperature optical spectral weight and Fermi-liquid renormalization in bi-based cuprate superconductors. Phys. Rev. Lett. 105, 077002 (2010)ADSCrossRefGoogle Scholar
- 167.E. van Heumen, R. Lortz, A.B. Kuzmenko, F. Carbone, D. van der Marel, X. Zhao, G. Yu, Y. Cho, N. Barisic, M. Greven, C.C. Homes, S.V. Dordevic, Optical and thermodynamic properties of the high-temperature superconductor \({\rm {Hg}}{{\rm {Ba}}}_{2}{\rm {Cu}}{{\rm {O}}}_{4+\delta }\). Phys. Rev. B 75, 054522 (2007)Google Scholar
- 168.L. Ortenzi, E. Cappelluti, L. Benfatto, L. Pietronero, Fermi-surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 103, 046404 (2009)ADSCrossRefGoogle Scholar
- 169.L. Benfatto, E. Cappelluti, Effects of the Fermi-surface shrinking on the optical sum rule in pnictides. Phys. Rev. B 83, 104516 (2011)ADSCrossRefGoogle Scholar
- 170.X.-Y. Zhu, Q. Yang, M. Muntwiler, Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42(11), 1779–1787 (2009)CrossRefGoogle Scholar
- 171.D.S. Ellis, J.P. Hill, S. Wakimoto, R.J. Birgeneau, D. Casa, T. Gog, Y.-J. Kim, Charge-transfer exciton in La\(_2\)CuO\(_4\) probed with resonant inelastic x-ray scattering. Phys. Rev. B 77(6), 060501 (2008)ADSCrossRefGoogle Scholar
- 172.E. Collart, A. Shukla, J.P. Rueff, P. Leininger, H. Ishii, I. Jarrige, Y.Q. Cai, S.-W. Cheong, G. Dhalenne, Localized and delocalized excitons: resonant inelastic x-ray scattering in La\(_{2-x}\)Sr\(_x\)NiO\(_4\) and La\(_{2-x}\)Sr\(_x\)CuO\(_4\). Phys. Rev. Lett. 96(15), 157004 (2006)ADSCrossRefGoogle Scholar
- 173.E.E. Salpeter, H.A. Bethe, A relativistic equation for bound-state problems. Phys. Rev. 84(6), 1232 (1951)ADSMathSciNetMATHCrossRefGoogle Scholar
- 174.L.I. Bendavid, E.A. Carter, Status in calculating electronic excited states in transition metal oxides from first principles. in First Principles Approaches to Spectroscopic Properties of Complex Materials (Springer, 2014), pp. 47–98Google Scholar
- 175.H. Haug, S. Schmitt-Rink, Basic mechanisms of the optical nonlinearities of semiconductors near the band edge. JOSA B 2(7), 1135–1142 (1985)ADSCrossRefGoogle Scholar
- 176.S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38(2), 89–188 (1989)ADSCrossRefGoogle Scholar
- 177.J.T. Devreese, S.N. Klimin, J.L.M. van Mechelen, D. van der Marel, Many-body large polaron optical conductivity in SrTi\(_{1-x}\)Nb\(_x\)O\(_3\). Phys. Rev. B 81(12), 125119 (2010)ADSCrossRefGoogle Scholar
- 178.M. Rössle, C.N. Wang, P. Marsik, M. Yazdi-Rizi, K.W. Kim, A. Dubroka, I. Marozau, C.W. Schneider, J. Humlíček, D. Baeriswyl, Optical probe of ferroelectric order in bulk and thin-film perovskite titanates. Phys. Rev. B 88(10), 104110 (2013)ADSCrossRefGoogle Scholar
- 179.Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967)ADSCrossRefGoogle Scholar
- 180.C. Keffer, T.M. Hayes, A. Bienenstock, PbTe Debye-Waller factors and band-gap temperature dependence. Phys. Rev. Lett. 21(25), 1676 (1968)ADSCrossRefGoogle Scholar
- 181.L. Yu, D. Munzar, A.V. Boris, P. Yordanov, J. Chaloupka, T. Wolf, C.T. Lin, B. Keimer, C. Bernhard, Evidence for two separate energy gaps in underdoped high-temperature cuprate superconductors from broadband infrared ellipsometry. Phys. Rev. Lett. 100(17), 177004 (2008)ADSCrossRefGoogle Scholar
- 182.I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80(3), 885 (2008)ADSCrossRefGoogle Scholar
- 183.M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauss, C. Gross, E. Demler, S. Kuhr, I. Bloch, The Higgs amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487(7408), 454–458 (2012)ADSCrossRefGoogle Scholar
- 184.C.A.D. Roeser, M. Kandyla, A. Mendioroz, E. Mazur, Optical control of coherent lattice vibrations in tellurium. Phys. Rev. B 70(21), 212302 (2004)ADSCrossRefGoogle Scholar
- 185.D. Mihailovic, D. Dvorsek, V.V. Kabanov, J. Demsar, L. Forró, H. Berger, Femtosecond data storage, processing, and search using collective excitations of a macroscopic quantum state. Appl. Phys. Lett. 80(5), 871–873 (2002)ADSCrossRefGoogle Scholar
- 186.D. Fausti, R.I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri, Light-induced superconductivity in a stripe-ordered cuprate. Science 331(6014), 189–191 (2011)ADSCrossRefGoogle Scholar
- 187.W. Hu, S. Kaiser, D. Nicoletti, C.R Hunt, I.a Gierz, M.C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, A. Cavalleri. Optically enhanced coherent transport in YBa\(_2\)Cu\(_3\)O\(_{6.5}\) by ultrafast redistribution of interlayer coupling. Nat. Mat., 13(7):705–711 (2014)Google Scholar
- 188.R. Mankowsky, A. Subedi, M. Först, S.O. Mariager, M. Chollet, H.T. Lemke, J.S. Robinson, J.M. Glownia, M.P. Minitti, A. Frano et al., Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa\(_2\)Cu\(_3\)O\(_{6.5}\). Nature 516(7529), 71–73 (2014)ADSCrossRefGoogle Scholar
- 189.M. Rini, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R.W. Schoenlein, A. Cavalleri, Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449(7158), 72–74 (2007)ADSCrossRefGoogle Scholar
- 190.R.I. Tobey, D. Prabhakaran, A.T. Boothroyd, A. Cavalleri, Ultrafast electronic phase transition in La\(_{1/2}\)Sr\(_{3/2}\)MnO\(_4\) by coherent vibrational excitation: evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101(19), 197404 (2008)ADSCrossRefGoogle Scholar
- 191.A. Subedi, A. Cavalleri, A. Georges, Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89(22), 220301 (2014)ADSCrossRefGoogle Scholar
- 192.A. Dienst, E. Casandruc, D. Fausti, L. Zhang, M. Eckstein, M. Hoffmann, V. Khanna, N. Dean, M. Gensch, S. Winnerl et al., Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nat. Mat. 12(6), 535–541 (2013)CrossRefGoogle Scholar
- 193.T. Kubacka, J.A. Johnson, M.C. Hoffmann, C. Vicario, S. De Jong, P. Beaud, S. Grübel, S.-W. Huang, L. Huber, L. Patthey et al., Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343(6177), 1333–1336 (2014)ADSCrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018