Strong Interactions and Correlations

Part of the Springer Theses book series (Springer Theses)


One of the most intriguing yet challenging fields of research in contemporary condensed matter physics is the investigation of many-body effects in strongly correlated quantum systems. This class of materials provides an excellent playground for discovering exotic phenomena involving charge, lattice, spin and orbital degrees of freedom and leading to extraordinarily varied chemical and physical properties. Understanding electronic correlations in prototypical systems like cuprates and manganites can pave the route to the potential design and engineering of novel materials with tailored functionalities.


  1. 1.
    H. Bethe, Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. 392(17), 55–129 (1928)CrossRefGoogle Scholar
  2. 2.
    A. Sommerfeld, I. Zusammenfassende Vorträge zum Hauptthema: Die Arten Chemischer Bindung und der Bau der Atome. Zur Frage nach der Bedeutung der Atommodelle. Z. Elktrochem. Angew. P, 34(9):426–430 (1928)Google Scholar
  3. 3.
    M.F. Bloch, Bemerkung zur Elektronentheorie des Ferromagnetismus und der Elektrischen Leitfähigkeit. Z. Phys. 57(7–8), 545–555 (1929)ADSMATHCrossRefGoogle Scholar
  4. 4.
    J.H. de Boer, E.J.W. Verwey, Semi-conductors with partially and with completely filled 3d-lattice bands. Proc. Phys. Soc. 49(4S), 59 (1937)ADSCrossRefGoogle Scholar
  5. 5.
    N.F. Mott, R. Peierls, Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49(4S), 72 (1937)ADSCrossRefGoogle Scholar
  6. 6.
    L.D. Landau, The theory of a Fermi liquid. Sov. Phys. JETP-USSR 3(6), 920–925 (1957)MathSciNetMATHGoogle Scholar
  7. 7.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175 (1957)Google Scholar
  8. 8.
    G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys.-JETP Engl. Transl. 11(3) (1960). (United States)Google Scholar
  9. 9.
    J.G. Bednorz, K.A. Müller, Possible high T\(_C\) superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    S. Jin, M. ThH Tiefel, R.A. McCormack, R. Fastnacht, L.H. Chen Ramesh, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264(5157), 413–414 (1994)Google Scholar
  11. 11.
    Z.X. Shen, A. Lanzara, S. Ishihara, N. Nagaosa, Role of the electron-phonon interaction in the strongly correlated cuprate superconductors. Phil. Mag. B 82(13), 1349–1368 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, K. Haule, Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A.J. Millis, Optical conductivity and correlated electron physics, in Strong Interactions in Low Dimensions (Springer, Dordrecht, 2004), pp. 195–235Google Scholar
  14. 14.
    A. Damascelli, Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004(T109), 61 (2004)CrossRefGoogle Scholar
  15. 15.
    L.J.P. Ament, M. Van Veenendaal, T.P. Devereaux, J.P. Hill, J. Van Den Brink, Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83(2), 705 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    P. Drude, Zur Elektronentheorie der Metalle. Ann. Phys. 306(3), 566–613 (1900)CrossRefGoogle Scholar
  17. 17.
    Y. Toyozawa, Optical Processes in Solids (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  18. 18.
    G.D. Mahan, Many-Particle Physics (Springer Science & Business Media, 2013)Google Scholar
  19. 19.
    A.S. Alexandrov, Polarons in Advanced Materials, vol. 103 (Springer Science & Business Media, 2008)Google Scholar
  20. 20.
    D. Emin, Polarons (Cambridge University Press, 2013)Google Scholar
  21. 21.
    J.P. Carbotte, Properties of boson-exchange superconductors. Rev. Mod. Phys. 62(4), 1027 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    W.L. McMillan, Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128(31), 10012–10013 (2006)CrossRefGoogle Scholar
  24. 24.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525(7567), 73–76 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    I. Errea, M. Calandra, C.J. Pickard, J. Nelson, R.J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, F. Mauri, High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    A. Bussmann-Holder, J. Köhler, M.H. Whangbo, A. Bianconi, A. Simon, High temperature superconductivity in sulfur hydride under ultrahigh pressure: a complex superconducting phase beyond conventional BCS. Novel Supercond. Mat. 2(1), 37–42 (2016)Google Scholar
  28. 28.
    A.Y. Liu, I. Mazin, J. Kortus, Beyond Eliashberg superconductivity in MgB\(_2\): anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87(8), 087005 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Wang, T. Plackowski, A. Junod, Specific heat in the superconducting and normal state (2–300 K, 0–16 T), and magnetic susceptibility of the 38 K superconductor MgB\(_2\): evidence for a multicomponent gap. Physica C 355(3), 179–193 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.C. Wang, H. Ding, A. Kaminski, J.C. Campuzano, S. Sasaki et al., The origin of multiple superconducting gaps in MgB\(_2\). Nature 423(6935), 65–67 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, D.G. Hinks, W.N. Kang, E. Choi, Hyun J. Kim et al., Two-band superconductivity in MgB\(_2\). Phys. Rev. Lett. 89(18), 187002 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    M.R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S.M. Kazakov, J. Karpinski, Ø. Fischer, Vortex imaging in the \(\pi \) band of magnesium diboride. Phys. Rev. Lett. 89(18), 187003 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    X.K. Chen, M.J. Konstantinović, J.C. Irwin, D.D. Lawrie, J.P. Franck, Evidence for two superconducting gaps in MgB\(_2\). Phys. Rev. Lett. 87(15), 157002 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, J. Hu, R.J. Hemley, H.-K. Mao, G. Lapertot, S.L. Budko, P.C. Canfield, Raman spectrum and lattice parameters of MgB\(_2\) as a function of pressure. Phys. Rev. B 64(10), 100509 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    J.W. Quilty, S. Lee, A. Yamamoto, S. Tajima, Superconducting gap in MgB\(_2\): electronic Raman scattering measurements of single crystals. Phys. Rev. Lett. 88(8), 087001 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    J.W. Quilty, S. Lee, S. Tajima, A. Yamanaka, c-Axis Raman scattering spectra of MgB\(_2\): observation of a dirty-limit gap in the \(\pi \) bands. Phys. Rev. Lett. 90(20), 207006 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    G. Blumberg, A. Mialitsin, B.S. Dennis, N.D. Zhigadlo, J. Karpinski, Multi-gap superconductivity in MgB\(_2\): magneto-Raman spectroscopy. Physica C 456(1), 75–82 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    V. Guritanu, A.B. Kuzmenko, D. van der Marel, S.M. Kazakov, N.D. Zhigadlo, J. Karpinski, Anisotropic optical conductivity and two colors of MgB\(_2\). Phys. Rev. B 73(10), 104509 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Superconductivity of metallic boron in MgB\(_2\). Phys. Rev. Lett. 86(20), 4656 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB\(_2\) and AlB\(_2\). Phys. Rev. Lett. 86(25), 5771 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, electron-phonon interaction in the normal and superconducting states of MgB\(_2\). Phys. Rev. B 64(2), 020501 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    K. Kunc, I. Loa, K. Syassen, R.K. Kremer, K. Ahn, MgB\(_2\) under pressure: phonon calculations, Raman spectroscopy, and optical reflectance. J. Phys. Cond. Matt. 13(44), 9945 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, The origin of the anomalous superconducting properties of MgB\(_2\). Nature 418(6899), 758–760 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    T. Yildirim, O. Gülseren, J.W. Lynn, C.M. Brown, T.J. Udovic, Q. Huang, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Slusky, T. He, M.K. Haas, P. Khalifah, K. Inumaru, R.J. Cava, Giant anharmonicity and nonlinear electron-phonon coupling in MgB\(_2\): a combined first-principles calculation and neutron scattering study. Phys. Rev. Lett. 87(3), 037001 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    Y.Q. Cai, P. Chow, O.D. Restrepo, Y. Takano, K. Togano, H. Kito, H. Ishii, C.C. Chen, K.S. Liang, C.T. Chen et al., Low-energy charge-density excitations in MgB\(_2\): striking interplay between single-particle and collective behavior for large momenta. Phys. Rev. Lett. 97(17), 176402 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    L.D. Landau, S.I. Pekar, Polaron effective mass. Zh. Eksp. Teor. Fiz. 18(5), 419 (1948)Google Scholar
  47. 47.
    H. Fröhlich, Electrons in lattice fields. Adv. Phys. 3(11), 325–361 (1954)ADSMATHCrossRefGoogle Scholar
  48. 48.
    T. Holstein, Studies of polaron motion: part I the molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)ADSMATHCrossRefGoogle Scholar
  49. 49.
    T. Holstein, Studies of polaron motion: part II the small polaron. Ann. Phys. 8(3), 343–389 (1959)ADSMATHCrossRefGoogle Scholar
  50. 50.
    R.P. Feynman, Slow electrons in a polar crystal. Phys. Rev. 97(3), 660 (1955)ADSMATHCrossRefGoogle Scholar
  51. 51.
    A.M. Stoneham, J. Gavartin, A.L. Shluger, A.V. Kimmel, G. Aeppli, C. Renner et al., Trapping, self-trapping and the polaron family. J. Phys-Condens. Mat. 19(25), 255208 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    P.B. Allen, V. Perebeinos, Self-trapped exciton and Franck-Condon spectra predicted in LaMnO\(_3\). Phys. Rev. Lett. 83(23), 4828 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    J. Callaway, D.P. Chen, D.G. Kanhere, Q. Li, Pairing in finite cluster models. Physica B 163(1–3), 127–128 (1990)ADSCrossRefGoogle Scholar
  54. 54.
    C.J. Thompson, T. Matsubara, A unified statistical mechanical approach to high-temperature superconductivity, in Studies of High Temperature Superconductors (1991)Google Scholar
  55. 55.
    A. Macridin, G.A. Sawatzky, M. Jarrell, Two-dimensional Hubbard-Holstein bipolaron. Phys. Rev. B 69(24), 245111 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    A.S. Mishchenko, N. Nagaosa, Z.-X. Shen, G. De Filippis, V. Cataudella, T.P. Devereaux, C. Bernhard, K.W. Kim, J. Zaanen, Charge dynamics of doped holes in high T\(_c\) cuprate superconductors: a clue from optical conductivity. Phys. Rev. Lett. 100(16), 166401 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    G. De Filippis, V. Cataudella, E.A. Nowadnick, T.P. Devereaux, A.S. Mishchenko, N. Nagaosa, Quantum dynamics of the Hubbard-Holstein model in equilibrium and nonequilibrium: application to pump-probe phenomena. Phys. Rev. Lett. 109(17), 176402 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    J.P. Franck, D.M. Ginsberg, Physical properties of high temperature superconductors IV. World Sci, Singapore, p. 189 (1994)Google Scholar
  59. 59.
    H.J.A. Molegraaf, C. Presura, D. Van Der Marel, P.H. Kes, M. Li, Superconductivity-induced transfer of in-plane spectral weight in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 295(5563), 2239–2241 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375(6532), 561–563 (1995)ADSCrossRefGoogle Scholar
  61. 61.
    A. Bianconi, N.L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, T. Ito, Determination of the local lattice distortions in the CuO\(_2\) plane of La\(_{1.85}\)Sr\(_{0.15}\)CuO\(_4\). Phys. Rev. Lett. 76(18), 3412 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C.T. Lin, B. Keimer, Electronic liquid crystal state in the high-temperature superconductor YBa\(_2\)Cu\(_3\)O\(_{6.45}\). Science 319(5863), 597–600 (2008)CrossRefGoogle Scholar
  63. 63.
    M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, A. Yazdani, Local ordering in the pseudogap state of the high-T\(_c\) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 303(5666), 1995–1998 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D.G. Hawthorn, F. He, Long-range incommensurate charge fluctuations in (Y, Nd)Ba\(_2\)Cu\(_3\)O\(_{6+x}\). Science 303(6096), 821–825 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    M. Hashimoto, E.A. Nowadnick, R.-H. He, I.M. Vishik, B. Moritz, Y. He, K. Tanaka, R.G. Moore, D. Lu, Y. Yoshida, M. Ishikado, T. Sasagawa, K. Fujita, S. Ishida, S. Uchida, H. Eisaki, Z. Hussain, T.P. Devereaux, Z.-X. Shen, Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Nat. Mat. 14(1), 37–42 (2015)CrossRefGoogle Scholar
  66. 66.
    J. Chang, E. Blackburn, A.T. Holmes, N.B. Christensen, J. Larsen, J. Mesot, R. Liang, D.A. Bonn, W.N. Hardy, A. Watenphul, Direct observation of competition between superconductivity and charge density wave order in YBa\(_2\)Cu\(_3\)O\(_{6.67}\). Nat. Phys. 8(12), 871–876 (2012)CrossRefGoogle Scholar
  67. 67.
    W.W. Warren Jr., R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell, G. Dabbagh, Cu spin dynamics and superconducting precursor effects in planes above T\(_C\) in YBa\(_2\)Cu\(_3\)O\(_{6.7}\). Phys. Rev. Lett. 62(10), 1193 (1989)ADSCrossRefGoogle Scholar
  68. 68.
    H. Alloul, T. Ohno, P. Mendels, \(^{89}\)Y NMR evidence for a Fermi-liquid behavior in YBa\(_2\)Cu\(_3\)O\(_{6+x}\). Phys. Rev. Lett. 63(16), 1700 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, K.C. Ott, Cu and O NMR studies of the magnetic properties of YBa\(_2\)Cu\(_3\)O\(_{6.63}\) (T\(_C\) = 62 K). Phys. Rev. B 43(1), 247 (1991)ADSCrossRefGoogle Scholar
  70. 70.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Electronic specific heat of YBa\(_2\)Cu\(_3\)O\(_{6+x}\) from 1.8 to 300 K. Phys. Rev. Lett. 71(11), 1740 (1993)ADSCrossRefGoogle Scholar
  71. 71.
    K.K. Gomes, A.N. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani, Visualizing pair formation on the atomic scale in the high-T\(_C\) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Nature 447(7144), 569–572 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    A. Yazdani, Visualizing pair formation on the atomic scale and the search for the mechanism of superconductivity in High-T\(_C\) cuprates. J. Phys. Cond. Matt. 21(16), 164214 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    M. Shi, A. Bendounan, E. Razzoli, S. Rosenkranz, M.R. Norman, J.C. Campuzano, J. Chang, M.Månsson, Y. Sassa, T. Claesson, O. Tjernberg, L. Patthey, N. Momono, M. Oda, M. Ido, S. Guerrero, C. Mudry, J. Mesot, Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates. EPL (Europhys. Lett.), 88(2):27008 (2009)Google Scholar
  74. 74.
    T. Kondo, Y. Hamaya, A.D. Palczewski, T. Takeuchi, J.S. Wen, Z.J. Xu, G. Gu, J. Schmalian, A. Kaminski, Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates. Nat. Phys. 7(1), 21–25 (2011)CrossRefGoogle Scholar
  75. 75.
    T. Kondo, W. Malaeb, Y. Ishida, T. Sasagawa, H. Sakamoto, T. Takeuchi, T. Tohyama, S. Shin, Point nodes persisting far beyond T\(_{\rm {C}}\) in Bi2212. Nat. Comm. 6, 7699 (2015)Google Scholar
  76. 76.
    N. Hussey, Phenomenology of the normal state in-plane transport properties of high-\({\rm {T}}_{\rm {C}}\) cuprates. J. Phys. Cond. Matt. 20(12), 123201 (2008)Google Scholar
  77. 77.
    J. Chang, M. Maansson, S. Pailhes, T. Claesson, O.J. Lipscombe, S.M. Hayden, L. Patthey, O. Tjernberg, J. Mesot. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La\(_{2-x}\)Sr\(_x\)CuO\(_4\). Nat. Comm. 4 (2013)Google Scholar
  78. 78.
    S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, S. Tajima, Optical spectra of La\(_{2-x}\)Sr\(_x\)CuO\(_4\): effect of carrier doping on the electronic structure of the CuO\(_2\) plane. Phys. Rev. B 43(10), 7942 (1991)ADSCrossRefGoogle Scholar
  79. 79.
    T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, N. Koshizuka, Evidence for quantum critical behavior in the optimally doped cuprate Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 285(5436), 2110–2113 (1999)CrossRefGoogle Scholar
  80. 80.
    S. Sachdev, Where is the quantum critical point in the cuprate superconductors? Phys. Stat. Sol. (b) 247(3), 537–543 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    J.P. Falck, A. Levy, M.A. Kastner, R.J. Birgeneau, Charge-transfer spectrum and its temperature dependence in La\(_2\)CuO\(_4\). Phys. Rev. Lett. 69(7), 1109 (1992)ADSCrossRefGoogle Scholar
  82. 82.
    A.J. Millis, A. Zimmers, R.P.S.M. Lobo, N. Bontemps, C.C. Homes, Mott physics and the optical conductivity of electron-doped cuprates. Phys. Rev. B 72(22), 224517 (2005)ADSCrossRefGoogle Scholar
  83. 83.
    N. Hussey, High-temperature superconductivity: isolating the gap. Nat. Phys. 12(4), 290–291 (2016)CrossRefGoogle Scholar
  84. 84.
    C. Weber, K. Haule, G. Kotliar, Strength of correlations in electron-and hole-doped cuprates. Nat. Phys. 6(8), 574–578 (2010)CrossRefGoogle Scholar
  85. 85.
    C. Weber, K. Haule, G. Kotliar, Apical oxygens and correlation strength in electron-and hole-doped copper oxides. Phys. Rev. B 82(12), 125107 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    K. McElroy, J. Lee, J.A. Slezak, D.-H. Lee, H. Eisaki, S. Uchida, J.C. Davis, Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 309(5737), 1048–1052 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    D.J. Scalapino, E. Loh, J.E. Hirsch, \(d\)-Wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986)ADSCrossRefGoogle Scholar
  88. 88.
    R. Haslinger, A.V. Chubukov, A. Abanov, Spectral function and conductivity in the normal state of the cuprates: a spin fluctuation study. Phys. Rev. B 63, 020503 (2000)CrossRefGoogle Scholar
  89. 89.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989)ADSCrossRefGoogle Scholar
  90. 90.
    J.P. Carbotte, E. Schachinger, D.N. Basov, Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401(6751), 354–356 (1999)ADSCrossRefGoogle Scholar
  91. 91.
    S.V. Dordevic, C.C. Homes, J.J. Tu, T. Valla, M. Strongin, P.D. Johnson, G.D. Gu, D.N. Basov, Extracting the electron-boson spectral function \({\alpha }^{2}F(\omega )\) from infrared and photoemission data using inverse theory. Phys. Rev. B 71, 104529 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    P.V. Bogdanov, A. Lanzara, S.A. Kellar, X.J. Zhou, E.D. Lu, W.J. Zheng, G. Gu, J.I. Shimoyama, K. Kishio, H. Ikeda, R. Yoshizaki, Z. Hussain, Z.X. Shen, Evidence for an energy scale for quasiparticle dispersion in \({\rm {Bi}}_{2}{\rm {Sr}}_{2}{\rm {CaCu}}_{2}{\rm {O}}_{8}\). Phys. Rev. Lett. 85, 2581–2584 (2000)Google Scholar
  93. 93.
    A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio et al., Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412(6846), 510–514 (2001)ADSCrossRefGoogle Scholar
  94. 94.
    M.R. Norman, A.V. Chubukov, High-frequency behavior of the infrared conductivity of cuprates. Phys. Rev. B 73, 140501 (2006)ADSCrossRefGoogle Scholar
  95. 95.
    P.W. Anderson, Is there glue in cuprate superconductors? Science 316(5832), 1705–1707 (2007)CrossRefGoogle Scholar
  96. 96.
    P. Phillips, Mottness. Ann. Phys. 321(7), 1634–1650 (2006)ADSMATHCrossRefGoogle Scholar
  97. 97.
    A.V. Boris, N.N. Kovaleva, O.V. Dolgov, T. Holden, C.T. Lin, B. Keimer, C. Bernhard, In-plane spectral weight shift of charge carriers in YBa\(_2\)Cu\(_3\)O\(_{6.9}\). Science 304(5671), 708–710 (2004)ADSCrossRefGoogle Scholar
  98. 98.
    T.D. Stanescu, P. Phillips, Pseudogap in doped mott insulators is the near-neighbor analogue of the Mott gap. Phys. Rev. Lett. 91(1), 017002 (2003)ADSCrossRefGoogle Scholar
  99. 99.
    F. Carbone, A.B. Kuzmenko, H.J. Molegraaf, E. Van Heumen, V. Lukovac, F. Marsiglio, D. van der Marel, K. Haule, G. Kotliar, H. Berger, Doping dependence of the redistribution of optical spectral weight in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Phys. Rev. B 74(6), 064510 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    M. Rübhausen, A. Gozar, M.V. Klein, P. Guptasarma, D.G. Hinks, Superconductivity-induced optical changes for energies of 100\(\delta \) in the cuprates. Phys. Rev. B 63(22), 224514 (2001)ADSCrossRefGoogle Scholar
  101. 101.
    J. Bäckström, D. Budelmann, R. Rauer, M. Rübhausen, H. Rodriguez, H. Adrian, Optical properties of YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) and PrBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) films: high-energy correlations and metallicity. Phys. Rev. B 70(17), 174502 (2004)ADSCrossRefGoogle Scholar
  102. 102.
    M. Tinkham. Introduction to Superconductivity: (Dover Books on Physics), vol. I (2004)Google Scholar
  103. 103.
    A.J. Leggett, Where is the energy saved in cuprate superconductivity? J. Phys. Chem. Solids 59(10), 1729–1732 (1998)ADSCrossRefGoogle Scholar
  104. 104.
    A.J. Leggett, A midinfrared scenario for cuprate superconductivity. Proc. Natl. Acad. Sci. 96(15), 8365–8372 (1999)ADSCrossRefGoogle Scholar
  105. 105.
    A.J. Leggett, Cuprate superconductivity: dependence of T\(_C\) on the c-axis layering structure. Phys. Rev. Lett. 83(2), 392 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    J. Levallois, M.K. Tran, D. Pouliot, C.N. Presura, L.H. Greene, J.N. Eckstein, J. Uccelli, E. Giannini, G.D. Gu, A.J. Leggett, D. van der Marel, Temperature-dependent ellipsometry measurements of partial Coulomb energy in superconducting cuprates. Phys. Rev. X 6, 031027 (2016)Google Scholar
  107. 107.
    N.N. Bogoliubov, V.V. Tolmachev, D.V. Shirkov, A new method in the theory of superconductivity, in Academy of Sciences of the USSR (1958)Google Scholar
  108. 108.
    B. Mansart, J. Lorenzana, A. Mann, A. Odeh, M. Scarongella, M. Chergui, F. Carbone, Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy. Proc. Natl. Acad. Sci. 110(12), 4539–4544 (2013)ADSCrossRefGoogle Scholar
  109. 109.
    J. Lorenzana, B. Mansart, A. Mann, A. Odeh, M. Chergui, F. Carbone, Investigating pairing interactions with coherent charge fluctuation spectroscopy. Eur. Phys. J. Spec. Top. 222(5), 1223–1239 (2013)CrossRefGoogle Scholar
  110. 110.
    R.A. Kaindl, M. Woerner, T. Elsaesser, D.C. Smith, J.F. Ryan, G.A. Farnan, M.P. McCurry, D.G. Walmsley, Ultrafast mid-infrared response of YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\). Science 287(5452), 470–473 (2000)ADSCrossRefGoogle Scholar
  111. 111.
    A. Pashkin, M. Porer, M. Beyer, Kyung W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, Femtosecond response of quasiparticles and phonons in superconducting YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) studied by wideband terahertz spectroscopy. Phys. Rev. Lett. 105(6), 067001 (2010)ADSCrossRefGoogle Scholar
  112. 112.
    D. Khomskii, Transition Metal Compounds (Cambridge University Press, 2014)Google Scholar
  113. 113.
    Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000)ADSCrossRefGoogle Scholar
  114. 114.
    N.N. Kovaleva, A.V. Boris, C. Bernhard, A. Kulakov, A. Pimenov, A.M. Balbashov, G. Khaliullin, B. Keimer, Spin-controlled Mott-Hubbard bands in LaMnO\(_3\) probed by optical ellipsometry. Phys. Rev. Lett. 93(14), 147204 (2004)ADSCrossRefGoogle Scholar
  115. 115.
    A.S. Moskvin, A.A. Makhnev, L.V. Nomerovannaya, N.N. Loshkareva, A.M. Balbashov, Interplay of p-d and d-d charge transfer transitions in rare-earth perovskite manganites. Phys. Rev. B 82(3), 035106 (2010)ADSCrossRefGoogle Scholar
  116. 116.
    J. Zaanen, G.A. Sawatzky, J.W. Allen, Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55(4), 418 (1985)ADSCrossRefGoogle Scholar
  117. 117.
    J.F. Lawler, J.G. Lunney, J.M.D. Coey, Magneto-optic Faraday effect in (La\(_{1-x}\)Ca\(_x\))MnO\(_3\) films. Appl. Phys. Lett. 65(23), 3017–3018 (1994)ADSCrossRefGoogle Scholar
  118. 118.
    N.N. Kovaleva, K.I. Kugel, Z. Pot\({\mathring{{\rm{u}}}}\)ček, O.E. Kusmartseva, N.S. Goryachev, Z. Bryknar, E.I. Demikhov, V.A. Trepakov, A. Dejneka, F.V. Kusmartsev, A.M. Stoneham, Optical evidence of quantum rotor orbital excitations in orthorhombic manganites. J. Exp. Theor. Phys. 122(5), 890–901 (2016)ADSCrossRefGoogle Scholar
  119. 119.
    T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Distorted perovskite with e\(_g^1\) configuration as a frustrated spin system. Phys. Rev. B 68(6), 060403 (2003)ADSCrossRefGoogle Scholar
  120. 120.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426(6962), 55–58 (2003)ADSCrossRefGoogle Scholar
  121. 121.
    T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92(25), 257201 (2004)ADSCrossRefGoogle Scholar
  122. 122.
    M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Magnetic inversion symmetry breaking and ferroelectricity in TbMnO\(_3\). Phys. Rev. Lett. 95(8), 087206 (2005)ADSCrossRefGoogle Scholar
  123. 123.
    A.B. Sushkov, R. Valdés Aguilar, S. Park, S-W. Cheong, H.D. Drew. Electromagnons in multiferroic \({{\rm {YMn}}}_{2}{{\rm {O}}}_{5}\) and \({\rm {TbMn}}_{2}{{\rm {O}}}_{5}\). Phys. Rev. Lett. 98, 027202 (2007)Google Scholar
  124. 124.
    Y. Takahashi, N. Kida, Y. Yamasaki, J. Fujioka, T. Arima, R. Shimano, S. Miyahara, M. Mochizuki, N. Furukawa, Y. Tokura, Evidence for an electric-dipole active continuum band of spin excitations in multiferroic \({{\rm {TbMnO}}}_{3}\). Phys. Rev. Lett. 101, 187201 (2008)Google Scholar
  125. 125.
    A. Pimenov, A.A. Mukhin, V.Y. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2(2), 97–100 (2006)CrossRefGoogle Scholar
  126. 126.
    P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, M.-A. Measson, H. Sakata, Magnetoelectric excitations in multiferroic TbMnO\(_3\) by Raman scattering. Phys. Rev. B 81, 054428 (2010)ADSCrossRefGoogle Scholar
  127. 127.
    P. Rovillain, J. Liu, M. Cazayous, Y. Gallais, M.-A. Measson, H. Sakata, A. Sacuto, Electromagnon and phonon excitations in multiferroic TbMnO\(_3\). Phys. Rev. B 86, 014437 (2012)ADSCrossRefGoogle Scholar
  128. 128.
    D. Polli, M. Rini, S. Wall, R.W. Schoenlein, Y. Tomioka, Y. Tokura, G. Cerullo, A. Cavalleri, Coherent orbital waves in the photo-induced insulator-metal dynamics of a magnetoresistive manganite. Nat. Mat. 6(9), 643–647 (2007)CrossRefGoogle Scholar
  129. 129.
    S. Wall, D. Prabhakaran, A.T. Boothroyd, A. Cavalleri, Ultrafast coupling between light, coherent lattice vibrations, and the magnetic structure of semicovalent LaMnO\(_3\). Phys. Rev. Lett. 103(9), 097402 (2009)ADSCrossRefGoogle Scholar
  130. 130.
    I.P. Handayani, R.I. Tobey, J. Janusonis, D.A. Mazurenko, N. Mufti, A.A. Nugroho, M.O. Tjia, T.T.M. Palstra, P.H.M. van Loosdrecht, Dynamics of photo-excited electrons in magnetically ordered TbMnO\(_3\). J. Phys-Condens. Mat. 25(11), 116007 (2013)ADSCrossRefGoogle Scholar
  131. 131.
    P. Beaud, A. Caviezel, S.O. Mariager, L. Rettig, G. Ingold, C. Dornes, S.W. Huang, J.A. Johnson, M. Radovic, T. Huber et al., A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mat. 13(10), 923–927 (2014)CrossRefGoogle Scholar
  132. 132.
    J.A. Johnson, T. Kubacka, M.C. Hoffmann, C. Vicario, S. de Jong, P. Beaud, S. Grübel, S.-W. Huang, L. Huber, Y.W. Windsor, E.M. Bothschafter, L. Rettig, M. Ramakrishnan, A. Alberca, L. Patthey, Y.-D. Chuang, J.J. Turner, G.L. Dakovski, W.-S. Lee, M.P. Minitti, W. Schlotter, R.G. Moore, C.P. Hauri, S.M. Koohpayeh, V. Scagnoli, G. Ingold, S.L. Johnson, U. Staub, Magnetic order dynamics in optically excited multiferroic \({{\rm {TbMn}}} {{\rm {O}}}_{3}\). Phys. Rev. B 92, 184429 (2015)Google Scholar
  133. 133.
    T. Ogasawara, T. Kimura, T. Ishikawa, M. Kuwata-Gonokami, Y. Tokura, Dynamics of photoinduced melting of charge/orbital order in a layered manganite La\(_{0.5}\)Sr\(_{1.5}\)MnO\(_4\). Phys. Rev. B 63(11), 113105 (2001)ADSCrossRefGoogle Scholar
  134. 134.
    M. Matsubara, Y. Okimoto, T. Ogasawara, Y. Tomioka, H. Okamoto, Y. Tokura, Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite \({{\rm {Gd}}}_{0.55}{{\rm {Sr}}}_{0.45}{{\rm {MnO}}}_{3}\). Phys. Rev. Lett. 99, 207401 (2007)Google Scholar
  135. 135.
    P. Beaud, S.L. Johnson, E. Vorobeva, U. Staub, R.A. De Souza, C.J. Milne, Q.X. Jia, G. Ingold, Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. Phys. Rev. Lett. 103(15), 155702 (2009)ADSCrossRefGoogle Scholar
  136. 136.
    K.B. Tolpygo, Physical properties of the salt lattice constructed from deforming ions. J. Exp. Theor. Phys. (USSR) 20(6), 497–509 (1950)Google Scholar
  137. 137.
    S. Savasta, O. Di Stefano, V. Savona, W. Langbein, Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94(24), 246401 (2005)ADSCrossRefGoogle Scholar
  138. 138.
    T.C.H. Liew, V. Savona, Single photons from coupled quantum modes. Phys. Rev. Lett. 104(18), 183601 (2010)ADSCrossRefGoogle Scholar
  139. 139.
    K.G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T.C.H. Liew, V. Savona, A.V. Kavokin, R. André, B. Deveaud-Plédran, Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106(11), 115301 (2011)ADSCrossRefGoogle Scholar
  140. 140.
    P.W. Anderson, More is different. Science 177(4047), 393–396 (1972)ADSCrossRefGoogle Scholar
  141. 141.
    Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H. Castro Neto, C.N. Lau, F. Keilmann, D.N. Basov, D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405), 82–85 (2012)ADSCrossRefGoogle Scholar
  142. 142.
    P. Abbamonte, T. Graber, J.P. Reed, S. Smadici, C.-L. Yeh, A. Shukla, J.-P. Rueff, W. Ku, Dynamical reconstruction of the exciton in LiF with inelastic x-ray scattering. Proc. Natl. Acad. Sci. 105(34), 12159–12163 (2008)ADSCrossRefGoogle Scholar
  143. 143.
    M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, A. Cavalleri, Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7(11), 854–856 (2011)CrossRefGoogle Scholar
  144. 144.
    X. Zhang, T. Liu, M.E. Flatté, H.X. Tang, Electric-field coupling to spin waves in a centrosymmetric ferrite. Phys. Rev. Lett. 113, 037202 (2014)ADSCrossRefGoogle Scholar
  145. 145.
    S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
  146. 146.
    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874 (1957)ADSMathSciNetCrossRefGoogle Scholar
  147. 147.
    B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Act. 4, 299–304 (1983)CrossRefGoogle Scholar
  148. 148.
    S.K. Saikin, A. Eisfeld, S. Valleau, A. Aspuru-Guzik, Photonics meets excitonics: natural and artificial molecular aggregates. Nanophotonics 2(1), 21–38 (2013)ADSCrossRefGoogle Scholar
  149. 149.
    M. Först, R.I. Tobey, S. Wall, H. Bromberger, V. Khanna, A.L. Cavalieri, Y.-D. Chuang, W.S. Lee, R. Moore, W.F. Schlotter, J.J. Turner, O. Krupin, M. Trigo, H. Zheng, J.F. Mitchell, S.S. Dhesi, J.P. Hill, A. Cavalleri, Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104 (2011)ADSCrossRefGoogle Scholar
  150. 150.
    V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D Appl. Phys. 43(26), 264001 (2010)ADSCrossRefGoogle Scholar
  151. 151.
    T. Feurer, N.S. Stoyanov, D.W. Ward, J.C. Vaughan, E.R. Statz, K.A. Nelson, Terahertz polaritonics. Annu. Rev. Mater. Res. 37, 317–350 (2007)ADSCrossRefGoogle Scholar
  152. 152.
    E. Saitoh, S. Okamoto, K.T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, Y. Tokura, Observation of orbital waves as elementary excitations in a solid. Nature 410(6825), 180–183 (2001)ADSCrossRefGoogle Scholar
  153. 153.
    Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122(1), 345 (1961)ADSCrossRefGoogle Scholar
  154. 154.
    W.L. McMillan, Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition. Phys. Rev. B 14(4), 1496 (1976)ADSCrossRefGoogle Scholar
  155. 155.
    P.W. Anderson, Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963)ADSMathSciNetMATHCrossRefGoogle Scholar
  156. 156.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508 (1964)ADSMathSciNetCrossRefGoogle Scholar
  157. 157.
    A.J. Leggett, Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36(5), 901–930 (1966)ADSCrossRefGoogle Scholar
  158. 158.
    D. Pines, D. Bohm, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85(2), 338 (1952)ADSMathSciNetMATHCrossRefGoogle Scholar
  159. 159.
    D. van der Marel, A. Tsvetkov, Transverse optical plasmons in layered superconductors. Czech J. Phys. 46(6), 3165–3168 (1996)CrossRefGoogle Scholar
  160. 160.
    W. Hayes, R. Loudon, Scattering of Light by Crystals (Courier Corporation, 2012)Google Scholar
  161. 161.
    S. Galambosi, J.A. Soininen, A. Mattila, S. Huotari, S. Manninen, G. Vankó, N.D. Zhigadlo, J. Karpinski, K. Hämäläinen, Inelastic x-ray scattering study of collective electron excitations in MgB\(_2\). Phys. Rev. B 71(6), 060504 (2005)ADSCrossRefGoogle Scholar
  162. 162.
    M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002)Google Scholar
  163. 163.
    Y. U. Peter and M. Cardona. Fundamentals of Semiconductors: Physics and Materials Properties (Springer Science & Business Media, 2010)Google Scholar
  164. 164.
    L.D. Landau, On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 10, 25 (1946)MathSciNetMATHGoogle Scholar
  165. 165.
    A. Toschi, M. Capone, M. Ortolani, P. Calvani, S. Lupi, C. Castellani, Temperature dependence of the optical spectral weight in the cuprates: role of electron correlations. Phys. Rev. Lett. 95, 097002 (2005)ADSCrossRefGoogle Scholar
  166. 166.
    D. Nicoletti, O. Limaj, P. Calvani, G. Rohringer, A. Toschi, G. Sangiovanni, M. Capone, K. Held, S. Ono, Y. Ando, S. Lupi, High-temperature optical spectral weight and Fermi-liquid renormalization in bi-based cuprate superconductors. Phys. Rev. Lett. 105, 077002 (2010)ADSCrossRefGoogle Scholar
  167. 167.
    E. van Heumen, R. Lortz, A.B. Kuzmenko, F. Carbone, D. van der Marel, X. Zhao, G. Yu, Y. Cho, N. Barisic, M. Greven, C.C. Homes, S.V. Dordevic, Optical and thermodynamic properties of the high-temperature superconductor \({\rm {Hg}}{{\rm {Ba}}}_{2}{\rm {Cu}}{{\rm {O}}}_{4+\delta }\). Phys. Rev. B 75, 054522 (2007)Google Scholar
  168. 168.
    L. Ortenzi, E. Cappelluti, L. Benfatto, L. Pietronero, Fermi-surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 103, 046404 (2009)ADSCrossRefGoogle Scholar
  169. 169.
    L. Benfatto, E. Cappelluti, Effects of the Fermi-surface shrinking on the optical sum rule in pnictides. Phys. Rev. B 83, 104516 (2011)ADSCrossRefGoogle Scholar
  170. 170.
    X.-Y. Zhu, Q. Yang, M. Muntwiler, Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42(11), 1779–1787 (2009)CrossRefGoogle Scholar
  171. 171.
    D.S. Ellis, J.P. Hill, S. Wakimoto, R.J. Birgeneau, D. Casa, T. Gog, Y.-J. Kim, Charge-transfer exciton in La\(_2\)CuO\(_4\) probed with resonant inelastic x-ray scattering. Phys. Rev. B 77(6), 060501 (2008)ADSCrossRefGoogle Scholar
  172. 172.
    E. Collart, A. Shukla, J.P. Rueff, P. Leininger, H. Ishii, I. Jarrige, Y.Q. Cai, S.-W. Cheong, G. Dhalenne, Localized and delocalized excitons: resonant inelastic x-ray scattering in La\(_{2-x}\)Sr\(_x\)NiO\(_4\) and La\(_{2-x}\)Sr\(_x\)CuO\(_4\). Phys. Rev. Lett. 96(15), 157004 (2006)ADSCrossRefGoogle Scholar
  173. 173.
    E.E. Salpeter, H.A. Bethe, A relativistic equation for bound-state problems. Phys. Rev. 84(6), 1232 (1951)ADSMathSciNetMATHCrossRefGoogle Scholar
  174. 174.
    L.I. Bendavid, E.A. Carter, Status in calculating electronic excited states in transition metal oxides from first principles. in First Principles Approaches to Spectroscopic Properties of Complex Materials (Springer, 2014), pp. 47–98Google Scholar
  175. 175.
    H. Haug, S. Schmitt-Rink, Basic mechanisms of the optical nonlinearities of semiconductors near the band edge. JOSA B 2(7), 1135–1142 (1985)ADSCrossRefGoogle Scholar
  176. 176.
    S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38(2), 89–188 (1989)ADSCrossRefGoogle Scholar
  177. 177.
    J.T. Devreese, S.N. Klimin, J.L.M. van Mechelen, D. van der Marel, Many-body large polaron optical conductivity in SrTi\(_{1-x}\)Nb\(_x\)O\(_3\). Phys. Rev. B 81(12), 125119 (2010)ADSCrossRefGoogle Scholar
  178. 178.
    M. Rössle, C.N. Wang, P. Marsik, M. Yazdi-Rizi, K.W. Kim, A. Dubroka, I. Marozau, C.W. Schneider, J. Humlíček, D. Baeriswyl, Optical probe of ferroelectric order in bulk and thin-film perovskite titanates. Phys. Rev. B 88(10), 104110 (2013)ADSCrossRefGoogle Scholar
  179. 179.
    Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967)ADSCrossRefGoogle Scholar
  180. 180.
    C. Keffer, T.M. Hayes, A. Bienenstock, PbTe Debye-Waller factors and band-gap temperature dependence. Phys. Rev. Lett. 21(25), 1676 (1968)ADSCrossRefGoogle Scholar
  181. 181.
    L. Yu, D. Munzar, A.V. Boris, P. Yordanov, J. Chaloupka, T. Wolf, C.T. Lin, B. Keimer, C. Bernhard, Evidence for two separate energy gaps in underdoped high-temperature cuprate superconductors from broadband infrared ellipsometry. Phys. Rev. Lett. 100(17), 177004 (2008)ADSCrossRefGoogle Scholar
  182. 182.
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80(3), 885 (2008)ADSCrossRefGoogle Scholar
  183. 183.
    M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauss, C. Gross, E. Demler, S. Kuhr, I. Bloch, The Higgs amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487(7408), 454–458 (2012)ADSCrossRefGoogle Scholar
  184. 184.
    C.A.D. Roeser, M. Kandyla, A. Mendioroz, E. Mazur, Optical control of coherent lattice vibrations in tellurium. Phys. Rev. B 70(21), 212302 (2004)ADSCrossRefGoogle Scholar
  185. 185.
    D. Mihailovic, D. Dvorsek, V.V. Kabanov, J. Demsar, L. Forró, H. Berger, Femtosecond data storage, processing, and search using collective excitations of a macroscopic quantum state. Appl. Phys. Lett. 80(5), 871–873 (2002)ADSCrossRefGoogle Scholar
  186. 186.
    D. Fausti, R.I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri, Light-induced superconductivity in a stripe-ordered cuprate. Science 331(6014), 189–191 (2011)ADSCrossRefGoogle Scholar
  187. 187.
    W. Hu, S. Kaiser, D. Nicoletti, C.R Hunt, I.a Gierz, M.C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, A. Cavalleri. Optically enhanced coherent transport in YBa\(_2\)Cu\(_3\)O\(_{6.5}\) by ultrafast redistribution of interlayer coupling. Nat. Mat., 13(7):705–711 (2014)Google Scholar
  188. 188.
    R. Mankowsky, A. Subedi, M. Först, S.O. Mariager, M. Chollet, H.T. Lemke, J.S. Robinson, J.M. Glownia, M.P. Minitti, A. Frano et al., Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa\(_2\)Cu\(_3\)O\(_{6.5}\). Nature 516(7529), 71–73 (2014)ADSCrossRefGoogle Scholar
  189. 189.
    M. Rini, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R.W. Schoenlein, A. Cavalleri, Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449(7158), 72–74 (2007)ADSCrossRefGoogle Scholar
  190. 190.
    R.I. Tobey, D. Prabhakaran, A.T. Boothroyd, A. Cavalleri, Ultrafast electronic phase transition in La\(_{1/2}\)Sr\(_{3/2}\)MnO\(_4\) by coherent vibrational excitation: evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101(19), 197404 (2008)ADSCrossRefGoogle Scholar
  191. 191.
    A. Subedi, A. Cavalleri, A. Georges, Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89(22), 220301 (2014)ADSCrossRefGoogle Scholar
  192. 192.
    A. Dienst, E. Casandruc, D. Fausti, L. Zhang, M. Eckstein, M. Hoffmann, V. Khanna, N. Dean, M. Gensch, S. Winnerl et al., Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nat. Mat. 12(6), 535–541 (2013)CrossRefGoogle Scholar
  193. 193.
    T. Kubacka, J.A. Johnson, M.C. Hoffmann, C. Vicario, S. De Jong, P. Beaud, S. Grübel, S.-W. Huang, L. Huber, L. Patthey et al., Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343(6177), 1333–1336 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations