Skip to main content

Neuroprotective Agents Target Molecular Mechanisms of Programmed Cell Death After Traumatic Brain Injury

  • Chapter
  • First Online:
Acute Neuronal Injury
  • 475 Accesses

Abstract

The review is to update the current state of knowledge in post-TBI pathophysiological mechanisms, including programmed cell death mechanisms and mechanism-based preclinical pharmacological intervention used in animal models. Their effects on cell death, inflammatory events, and prolonged motor and cognitive deficits will be summarized, and their potential success for clinical application will be evaluated. Many of the above-mentioned mechanisms may be important targets for limiting the consequences of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al Nimer F, Thelin E, Nystrom H, Dring AM, Svenningsson A, Piehl F, Nelson DW, Bellander BM (2015) Comparative assessment of the prognostic value of biomarkers in trau- matic brain injury reveals an independent role for serum levels of neurofilament light. PLoS One 10:e0132177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao H, Yang X, Zhuang Y, Huang Y, Wang T, Zhang M, Dai D, Wang S, Xiao H, Huang G, Kuai J, Tao L (2016) The effects of poloxamer 188 on the autophagy induced by traumatic brain injury. Neurosci Lett 634:7–12

    Article  PubMed  CAS  Google Scholar 

  • Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, Wang L, Zhang L, Gao YZ, Qin ZH, Chen XP, Tao LY (2012) Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res 37(12):2856–2867

    Article  PubMed  CAS  Google Scholar 

  • Bell BD, Leverrier S, Weist BM, Newton RH, Arechiga AF, Luhrs KA, Morrissette NS, Walsh CM (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci U S A 105(43):16677–16682

    Article  PubMed  PubMed Central  Google Scholar 

  • Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M et al (2003) A role for tumor necrosis factor receptor-2 and receptorinteracting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621

    Article  PubMed  CAS  Google Scholar 

  • Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumornecrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitricoxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 9:355–365

    Article  PubMed  CAS  Google Scholar 

  • Cheema ZF, Wade SB, Sata M, Walsh K, Sohrabji F, Miranda RC (1999) Fas/Apo [apoptosis]-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB. J Neurosci 19(5):1754–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chwieralski CE, Wehe T, Buhling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149

    Article  PubMed  CAS  Google Scholar 

  • Cullen DK, Vernekar VN, LaPlaca MC (2011) Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 28:2219–2233

    Article  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  • Ellis RC, O’steen WA, Hayes RL, Nick HS, Wang KK, Anderson DK (2005) Cellular localization and enzymatic activity of cathepsin B after spinal cord injury in the rat. Exp Neurol 193:19–28

    Article  PubMed  CAS  Google Scholar 

  • Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine betasynthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856

    Article  PubMed  CAS  Google Scholar 

  • Erlich S, Shohami E, Pinkas-Kramarski R (2006) Neurodegeneration induces upregulation of beclin 1. Autophagy 2:49–51

    Article  PubMed  CAS  Google Scholar 

  • Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14(3):400–410

    Article  PubMed  CAS  Google Scholar 

  • Frasdorf B, Radon C, Leimkuhler S (2014) Characterization and interaction studies of two isoforms of the dual localized 3-mercaptopyruvate sulfurtransferase TUM1 from humans. J Biol Chem 289:34543–34556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gajavelli S, Sinha VK, Mazzeo AT, Spurlock MS, Lee SW, Ahmed AI, Yokobori S, Bullock RM (2015) Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury. J Bioenerg Biomembr 47:133–148

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19(1):107–120

    Article  PubMed  CAS  Google Scholar 

  • Graham SH, Chen J, Clark RS (2000) Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J Neurotrauma 17(10):831–841

    Article  PubMed  CAS  Google Scholar 

  • Greenebaum B, Blossfield K, Hannig J, Carrillo CS, Beckett MA, Weichselbaum RR, Lee RC (2004) Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation. Burns 30:539–547

    Article  PubMed  Google Scholar 

  • Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, Doran E, Gillespie JP, O’Toole A (2000) Mitochondria and cell death. Biochem Soc Trans 278:170–177

    Article  Google Scholar 

  • Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Han W, Xie J, Li L, Liu Z, Hu X (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14(5):674–686

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I (2001) Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 283:460–468

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  • Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    Article  PubMed  Google Scholar 

  • Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275:159–163

    Article  Google Scholar 

  • Jin Y, Lin Y, Feng JF, Jia F, Gao G, Jiang JY (2015) Attenuation of cell death in injured cortex following post-traumatic brain injury moderate hypothermia: possible involvement of autophagy pathway. World Neurosurg 84:420–430

    Article  PubMed  Google Scholar 

  • Jones NC, Prior MJ, Burden-The E, Marsden CA, Morris PG, Murphy S (2005) Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur J Neurosci 22:72–78

    Article  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Dayani L, Rosenberg PA, Li J (2010) RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int J Physiol Pathophysiol Pharmacol 2(2):137–147

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    Article  PubMed  CAS  Google Scholar 

  • Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurode- generation. Ann N Y Acad Sci 1147:283–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krysko DV, Vanden-Berghe T, Herdek D, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    Article  PubMed  CAS  Google Scholar 

  • Kulbe JR, Hill RL, Singh IN, Wang JA, Hall ED (2016) Synaptic mitochondria sustain more damage than non-synaptic mitochondria after traumatic brain injury and are protected by cyclosporine A. J Neurotrauma. [Epub ahead of print]

    Google Scholar 

  • Lackner LL, Nunnari JM (2009) The molecular mechanism and cellular functions of mitochondrial division. Biochim Bio- Phys Acta 1792:1138–1144

    Article  CAS  Google Scholar 

  • Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, Clark RS (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28:540–550

    Article  PubMed  CAS  Google Scholar 

  • Lenz A, Franklin GA, Cheadle WG (2007) Systemic inflammation after trauma. Injury 38:1336–1345

    Article  PubMed  Google Scholar 

  • Lenzlinger PM, Hans VH, Jo ller-Jemelka HI, Trentz O, Morganti-Kossmann MC, Kossmann T (2001) Markers for cell-mediated immune response are elevated in cerebrospinal fluid and serum after severe traumatic brain injury in humans. J Neurotrauma 18:479–489

    Article  PubMed  CAS  Google Scholar 

  • Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin KM, Hsiao G, Shih CM, Chou DS, Sheu JR (2009) Mechanism of resveratrol-induced platelet apoptosis. Cardiovasc Res 83:575–585

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Baehrecke EH (2015) Autophagy cell death, and cancer. Mol Cell Oncol 2(3):e985913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lipinski MM, Wu J, Faden AI, Sarkar C (2015) Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal 23(6):565–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu CL, Chen S, Dietrich D, Hu BR (2008) Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 28:674–683

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ et al (2013) Autosis is a NaC, KC-ATPase-regulated form of cell death triggered by autophagyinducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 110:20364–20371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo CL, Chen XP, Li LL, Li QQ, Li BX, Xue AM, Xu HF, Dai DK, Shen YW, LY T, ZQ Z (2013a) Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons. J Neurotrauma 30:597–607

    Article  PubMed  Google Scholar 

  • Luo CL, Li QQ, Chen XP, Zhang XM, Li LL, Li BX, Zhao ZQ, Tao LY (2013b) Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res 1502:1–10

    Article  PubMed  CAS  Google Scholar 

  • Luo CL, Chen XP, Ni H, Li QQ, Yang R, Sun YX, Tao LY, Zhu GY (2010a) Comparison of labeling methods and time course of traumatic brain injury-induced cell death in mice. Neural Regen Res 5(9):706–709

    Google Scholar 

  • Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, Tao LY (2010b) Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res 88:2847–2858

    PubMed  CAS  Google Scholar 

  • Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, Dai DK, Shen YW, Xu HF, Ni H, Wan L, Qin ZH, Tao LY, Zhao ZQ (2011) Autophagy is involved in traumatic brain injury-induced cell death and partially contributes to functional outcome deficits in mice. Neuroscience 184:54–63. See comment in PubMed commons below.

    Article  PubMed  CAS  Google Scholar 

  • Martelli A, Testai L, Breschi MC, Blandizzi C, Virdis A et al (2012) Hydrogen sulphide: novel opportunity for drug discovery. Med Res Rev 32:1093–1130

    Article  PubMed  CAS  Google Scholar 

  • Meloni BP, Meade AJ, Kitikomolsuk D, Knuckey NW (2011) Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models. J Neurosci Methods 195(1):67–74

    Article  PubMed  Google Scholar 

  • Messer JS (2016) The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci. [Epub ahead of print]

    Google Scholar 

  • Moquin DM, McQuade T, Chan FK-M, Harhaj EW (2013) CYLD Deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8(10):e76841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022

    Article  PubMed  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  • Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  PubMed  CAS  Google Scholar 

  • Pozuelo-Rubio M (2011) 14-3-3_ binds class III phosphatidylinositol-3-kinase and inhibits autophagy. Autophagy 7:240–242

    Article  PubMed  Google Scholar 

  • Purnell PR, Fox HS (2013) Autophagy-mediated turnover ofdynamin-related protein 1. BMC Neurosci 14:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neu- rotoxicity. J Cell Sci 126:789–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadasivan S, Dunn WA Jr, Hayes RL, Wang KK (2008) Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun 373:478–481

    Article  PubMed  CAS  Google Scholar 

  • Santopietro J, Yeomans JA, Niemeier JP, White JK, Coughlin CM (2015) Traumatic brain injury and behavioral health: the state of treatment and policy. N C Med J 76:96–100

    PubMed  Google Scholar 

  • Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10(12):2208–2222

    Article  PubMed  CAS  Google Scholar 

  • Sanz O, Acarin L, Gonza’lez B, Castellano B (2002) NF-jB and IjBa expression following traumatic brain injury to the immature rat brain. J Neurosci Res 67:772–780

    Article  PubMed  CAS  Google Scholar 

  • Serbest G, Horwitz J, Barbee K (2005) The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma 22:119–132

    Article  PubMed  Google Scholar 

  • Sharp WW, Beiser DG, Fang YH, Han M, Piao L, Varughese J, Archer SL (2015) Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model. Crit Care Med 43:e38–e47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T (1997) Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 72:169–177

    Article  PubMed  CAS  Google Scholar 

  • Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474

    Article  PubMed  CAS  Google Scholar 

  • Song B, Zhou T, Yang WL, Liu J, Shao LQ (2016) Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis. https://doi.org/10.1111/odi.12574. [Epub ahead of print]

  • Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  PubMed  CAS  Google Scholar 

  • Tehranian R, Rose ME, Vagni V, Pickrell AM, Griffith RP, Liu H, Clark RS, Dixon CE, Kochanek PM, Graham SH (2008) Disruption of Bax protein prevents neuronal cell death but produces cognitive impairment in mice following traumatic brain injury. J Neurotrauma 25:755–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, Yoshioka T, Kominami E, Yamashima T (1999) Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol 155:187–194

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama Y, Koike M, Shibata M (2008) Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy 4:404–408

    Article  PubMed  CAS  Google Scholar 

  • Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P (2015) Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2(4):e975093

    Article  CAS  Google Scholar 

  • Uryu K, Laurer H, McIntosh T, Pratic OD, Martinez D, Leight S, Lee VM, Trojanowski JQ (2002) Repetitive mild brain trauma accelerates A beta deposition, lipid peroxidation, and cognitive impairment in a transgenicmouse model of Alzheimer amyloidosis. J Neurosci 22:446–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang DB, Garden GA, Kinoshita C, Wyles C, Babazadeh N, Sopher B, Kinoshita Y, Morrison RS (2013a) Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J Neurosci 33:1357–1365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–56

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Zhang L, Zhang M, Bao H, Liu W, Wang Y, Wang L, Dai D, Chang P, Dong W, Chen X, Tao L (2013b) [Gly14]-Humanin reduces histopathology and improves functional outcome after traumatic brain injury in mice. Neuroscience 231:70–81

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, Gu ZL, Qin ZH (2008) An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy 4:1–13

    Google Scholar 

  • Wang YQ, Wang L, Zhang MY, Wang T, Bao HJ, Liu WL, Dai DK, Zhang L, Chang P, Dong WW, Chen XP, Tao LY (2012 Sep) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37(9):1849–1858

    Article  PubMed  CAS  Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  PubMed  CAS  Google Scholar 

  • Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72:4721–4757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter CD, Iannotti F, Pringle AK, Trikkas C, Clough GF, Church MK (2002) A microdialysismethod for the recovery of IL-1beta, IL-6 and nerve growth factor from human brain in vivo. J Neurosci Methods 119:45–50

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Xia SX, Li QQ, Gao Y, Shen X, Ma L, Zhang MY, Wang T, Li YS, Wang ZF, Luo CL, Tao LY (2016) Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury. Brain Res 1630:134–143

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Fletcher GC, Tolkovsky AM (2001) Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11:361–365

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BH (2010a) Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res 1355:189–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Chua CC, Zhang M, Geng D, Liu CF, Hamdy RC, Chua BH (2010b) The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res 1343:206–212

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC, Chua BH (2008) Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res 1227:12–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua BH (2007) Necrostatin-1 protects against glutamateinduced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103(5):2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, Kominami E (1998) Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on “calpain-cathepsin hypothesis”. Eur J Neurosci 10:1723–1733

    Article  PubMed  CAS  Google Scholar 

  • You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, Moskowitz MA, Whalen MJ (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28(9):1564–1573

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhong C, Shi L, Guo Y, Fan Z (2009) Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to necroptosis. J Immunol 182:6993–7000

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Shan H, Wang T, Liu W, Wang Y, Wang L, Zhang L, Chang P, Dong W, Chen X, Tao L (2013a) Dynamic change of hydrogen sulfide after traumatic brain injury and its effect in mice. Neurochem Res 38(4):714–725

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Shan H, Wang Y, Wang T, Liu W, Wang L, Zhang L, Chang P, Dong W, Chen X, Tao L (2013b) The expression changes of cystathionine-β-synthase in brain cortex after traumatic brain injury. J Mol Neurosci 51(1):57–67

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Shan H, Chang P, Wang T, Dong W, Chen X, Tao L (2014) Hydrogen sulfide offers neuroprotection on traumatic brain injury in parallel with reduced apoptosis and autophagy in mice. PLoS One 9(1):e87241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M, Shan H, Chang P, Ma L, Chu Y, Shen X, Wu Q, Wang Z, Luo C, Wang T, Chen X, Tao L (2016) Upregulation of 3-MST relates to neuronal autophagy after traumatic brain injury in mice. Cell Mol Neurobiol. [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Chen Y, Jiang R, Li E, Chen X, Xi Z, Guo Y, Liu X, Zhou Y, Che Y, Jiang X (2011) PARP and RIP 1 are required for autophagy induced by 110-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 7(6):598–612

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Wang S, Li Y, Che L, Zhao Q (2013c) A selective inhibitor of Drp1, Mdivi-1, acts against cerebral ischemia/ reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett 535:104–109

    Article  PubMed  CAS  Google Scholar 

  • Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, Tao LY (2008) Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull 24(3):143–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao ST, Huang XT, Zhang C, Ke Y (2011) Humanin protects cortical neurons from ischemia and reperfusion injury by the increased activity of superoxide dismutase. Neurochem Res 37:153–160

    Article  PubMed  CAS  Google Scholar 

  • Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Yuan J (2014) SnapShot: Necroptosis. Cell 158:464–440

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Zhang Y, Bai G, Li H (2011) Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis 2:e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81530062), and Dr. Cheng-liang Luo did the mainly work of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Yang Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tao, LY. (2018). Neuroprotective Agents Target Molecular Mechanisms of Programmed Cell Death After Traumatic Brain Injury. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-77495-4_5

Download citation

Publish with us

Policies and ethics