Skip to main content

Oxidative Damage Mechanisms in Traumatic Brain Injury and Antioxidant Neuroprotective Approaches

  • Chapter
  • First Online:

Abstract

This chapter reviews our current knowledge of the role of oxidative damage mechanisms and pharmacological antioxidant neuroprotective strategies for inhibiting reactive oxygen species (ROS) and reactive nitrogen species (RNS)-mediated secondary injury following traumatic brain injury (TBI). First of all, the chemistry of the main forms of oxidative damage: lipid peroxidation, carbonylation and nitration are presented as well as the interactions of oxidative damage with other secondary injury mechanisms including glutamate-mediated excitotoxicity, intracellular calcium overload and mitochondrial dysfunction. Secondly, the general mechanistic approaches to interrupting oxidative damage are presented: decreasing ROS/RNS formation or scavenging ROS and RNS-derived radicals, inhibition of lipid peroxidation propagation, chelation of iron, which is a potent catalyst of lipid peroxidation reactions, scavenging of neurotoxic aldehydic lipid peroxidation products (‘carbonyls’), and enhancement of the expression of the pleiotopic Nrf2-antioxidant response element (ARE) pathway that controls the synthesis of several endogenous antioxidant enzymes and chemical antioxidants. Pharmacological examples of compounds that effectively inhibit oxidative damage and produce neuroprotective effects in animal TBI models by each of these various approaches are presented. Finally, the results of large phase III clinical trials with the either the radical scavenger polyethylene glycol-coupled superoxide dismutase (PEG-SOD) or the 21-aminosteroid lipid peroxidation inhibitor tirilazad are revisited in which the latter compound was found to selectively improve survival after moderate and severe TBI, particularly in male patients, suggesting that successful clinical translation of neuroprotective antioxidant compounds, or combinations of mechanistically complimentary antioxidants, should be possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Althaus JS, Oien TT, Fici GJ, Scherch HM, Sethy VH, VonVoigtlander PF (1994) Structure activity relationships of peroxynitrite scavengers an approach to nitric oxide neurotoxicity. Res Commun Chem Pathol Pharmacol 83(3):243–254

    PubMed  CAS  Google Scholar 

  • Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Sener M, Kocak A, Yologlu S (2007) Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 294(1–2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA (1997) Oxidative stress following traumatic brain injury in rats. Surg Neurol 47(6):575–581

    Article  CAS  PubMed  Google Scholar 

  • Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta 1822(5):675–684

    Article  CAS  PubMed  Google Scholar 

  • Beit-Yannai E, Zhang R, Trembovler V, Samuni A, Shohami E (1996) Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat. Brain Res 717(1–2):22–28

    Article  CAS  PubMed  Google Scholar 

  • Beni SM, Kohen R, Reiter RJ, Tan DX, Shohami E (2004) Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappaB and AP-1. FASEB J 18(1):149–151

    Article  CAS  PubMed  Google Scholar 

  • Bonini MG, Mason RP, Augusto O (2002) The Mechanism by which 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (tempol) diverts peroxynitrite decomposition from nitrating to nitrosating species. Chem Res Toxicol 15(4):506–511

    Article  CAS  PubMed  Google Scholar 

  • Bringold U, Ghafourifar P, Richter C (2000) Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Free Radic Biol Med 29(3–4):343–348

    Article  CAS  PubMed  Google Scholar 

  • Carrico KM, Vaishnav R, Hall ED (2009) Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 26(8):1369–1378

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll RT, Galatsis P, Borosky S, Kopec KK, Kumar V, Althaus JS, Hall ED (2000) 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration. Chem Res Toxicol 13(4):294–300

    Article  CAS  PubMed  Google Scholar 

  • Cebak JE, Singh IN, Hill RL, Wang JA, Hall ED (2017) Phenelzine protects brain mitochondrial function in vitro and in vivo following traumatic brain injury by scavenging the reactive carbonyls 4-hydroxynonenal and acrolein leading to cortical histological protection. J Neurotrauma 34(7):1302–1317

    Google Scholar 

  • Chan PH, Epstein CJ, Li Y, Huang TT, Carlson E, Kinouchi H, Yang G, Kamii H, Mikawa S, Kondo T et al (1995) Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma 12(5):815–824

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Fang Q, Zhang J, Zhou D, Wang Z (2011) Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res 89(4):515–523

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Park J, Butler B, Acosta G, Alvarez S, Zheng L, Tang J, McCain R, Zhang W, Ouyang Z, Cao P, Shi R (2016) Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury. J Neurochem 138(2):328–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirak B, Rousan N, Kocak A, Palaoglu O, Palaoglu S, Kilic K (1999) Melatonin as a free radical scavenger in experimental head trauma. Pediatr Neurosurg 31(6):298–301

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN (2009) Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett 460(2):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng-Bryant Y, Singh IN, Carrico KM, Hall ED (2008) Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model. J Cereb Blood Flow Metab 28(6):1114–1126

    Article  CAS  PubMed  Google Scholar 

  • Dimlich RV, Tornheim PA, Kindel RM, Hall ED, Braughler JM, McCall JM (1990) Effects of a 21-aminosteroid (U-74006F) on cerebral metabolites and edema after severe experimental head trauma. Adv Neurol 52:365–375

    PubMed  CAS  Google Scholar 

  • Du L, Bayir H, Lai Y, Zhang X, Kochanek PM, Watkins SC, Graham SH, Clark RS (2004) Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biol Chem 279(37):38563–38570

    Article  CAS  PubMed  Google Scholar 

  • Galvani S, Coatrieux C, Elbaz M, Grazide MH, Thiers JC, Parini A, Uchida K, Kamar N, Rostaing L, Baltas M, Salvayre R, Negre-Salvayre A (2008) Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radic Biol Med 45(10):1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33(8):2123–2136

    Article  PubMed  Google Scholar 

  • Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G (2009) Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 40(6):2241–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41(12 Pt 2):1819–1828

    PubMed  CAS  Google Scholar 

  • Hall E (1986) Beneficial effects of acute intravenous ibuprofen on neurological recovery of head injured mice: comparison of cyclooxygenase inhibition of thromboxane A2 synthetase or 5-lipoxygenase. CNS. Trauma 2:75–83

    Google Scholar 

  • Hall ED, Bosken JM (2009) Measurement of oxygen radicals and lipid peroxidation in neural tissues. Curr Protoc Neurosci Chapter 7:Unit 7 17. 11–51

    Google Scholar 

  • Hall ED, Yonkers PA, McCall JM, Braughler JM (1988) Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68(3):456–461

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Yonkers PA, Horan KL, Braughler JM (1989) Correlation between attenuation of posttraumatic spinal cord ischemia and preservation of tissue vitamin E by the 21-aminosteroid U74006F: evidence for an in vivo antioxidant mechanism. J Neurotrauma 6(3):169–176

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Braughler JM, Yonkers PA, Smith SL, Linseman KL, Means ED, Scherch HM, Von Voigtlander PF, Lahti RA, Jacobsen EJ (1991) U-78517F: a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther 258(2):688–694

    PubMed  CAS  Google Scholar 

  • Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK (1992) Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9(Suppl 2):S425–S442

    PubMed  Google Scholar 

  • Hall ED, Andrus PK, Yonkers PA (1993) Brain hydroxyl radical generation in acute experimental head injury. J Neurochem 60(2):588–594

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, McCall JM, Means ED (1994) Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28:221–268

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Andrus PK, Smith SL, Oostveen JA, Scherch HM, Lutzke BS, Raub TJ, Sawada GA, Palmer JR, Banitt LS, Tustin JM, Belonga KL, Ayer DE, Bundy GL (1995) Neuroprotective efficacy of microvascularly-localized versus brain-penetraiting antioxidants. Acta Neurochir (Suppl) 66:107–113

    Google Scholar 

  • Hall ED, Andrus PK, Smith SL, Fleck TJ, Scherch HM, Lutzke BS, Sawada GA, Althaus JS, Vonvoigtlander PF, Padbury GE, Larson PG, Palmer JR, Bundy GL (1997) Pyrrolopyrimidines: novel brain-penetrating antioxidants with neuroprotective activity in brain injury and ischemia models. J Pharmacol Exp Ther 281(2):895–904

    PubMed  CAS  Google Scholar 

  • Hall ED, Kupina NC, Althaus JS (1999) Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Ann N Y Acad Sci 890:462–468

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7(1):51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall ED, Wang JA, Miller DM (2012) Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Exp Neurol 238(2):176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge J (2008) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Hamann K, Shi R (2009) Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 111(6):1348–1356

    Article  CAS  PubMed  Google Scholar 

  • Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R (2008) Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem 104(3):708–718

    PubMed  CAS  Google Scholar 

  • Hong SC, Goto Y, Lanzino G, Soleau S, Kassell NF, Lee KS (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25(3):663–669

    Article  CAS  PubMed  Google Scholar 

  • Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40(3):501–506

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Kong J, Wang H, Wu J, Lu T, Jiang J, Ni H, Liang W (2011) Protective effect of tert-butylhydroquinone on cerebral inflammatory response following traumatic brain injury in mice. Injury 42(7):714–718

    Article  PubMed  Google Scholar 

  • Kassell NF, Haley EC Jr, Apperson-Hansen C, Alves WM (1996) Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg 84(2):221–228

    Article  CAS  PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  • Kontos HA (1989) Oxygen radicals in CNS damage. Chem Biol Interact 72(3):229–255

    Article  CAS  PubMed  Google Scholar 

  • Kontos HA, Povlishock JT (1986) Oxygen radicals in brain injury. Cent Nerv Syst Trauma 3(4):257–263

    Article  CAS  PubMed  Google Scholar 

  • Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64(5):803–807

    Article  CAS  PubMed  Google Scholar 

  • Langham J, Goldfrad C, Teasdale G, Shaw D, Rowan K (2000) Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev 2:CD000565

    Google Scholar 

  • Lanzino G, Kassell NF (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg 90(6):1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17(10):871–890

    Article  CAS  PubMed  Google Scholar 

  • Long DA, Ghosh K, Moore AN, Dixon CE, Dash PK (1996) Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res 717(1–2):109–117

    Article  CAS  PubMed  Google Scholar 

  • Longoni B, Salgo MG, Pryor WA, Marchiafava PL (1998) Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci 62(10):853–859

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Wang H, Qiao L, Wang X (2010) Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-alpha, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediat Inflamm 2010:238321

    Article  CAS  Google Scholar 

  • Mao L, Wang H, Wang X, Liao H, Zhao X (2011) Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury. J Surg Res 170(1):e105–e115

    Article  CAS  PubMed  Google Scholar 

  • Marklund N, Clausen F, Lewen A, Hovda DA, Olsson Y, Hillered L (2001) Alpha-phenyl-tert-N-butyl nitrone (PBN) improves functional and morphological outcome after cortical contusion injury in the rat. Acta Neurochir 143(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F, Klauber MR, Lagarrigue J, Lobato R, Persson L, Pickard JD, Piek J, Servadei F, Wellis GN, Morris GF, Means ED, Musch B (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89(4):519–525

    Article  CAS  PubMed  Google Scholar 

  • Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED (2008) Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol 209(1):243–253

    Article  CAS  PubMed  Google Scholar 

  • Mbye LH, Singh IN, Carrico KM, Saatman KE, Hall ED (2009) Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J Cereb Blood Flow Metab 29(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TK, Thomas M, Smith D, Banbury M (1992) The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma 9(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Mesenge C, Margaill I, Verrecchia C, Allix M, Boulu RG, Plotkine M (1998) Protective effect of melatonin in a model of traumatic brain injury in mice. J Pineal Res 25(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Mikawa S, Kinouchi H, Kamii H, Gobbel GT, Chen SF, Carlson E, Epstein CJ, Chan PH (1996) Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg 85(5):885–891

    Article  CAS  PubMed  Google Scholar 

  • Miller DM, Singh IN, Wang JA, Hall ED (2013) Administration of the Nrf2-ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo. Free Radic Biol Med 57:1–9

    Article  CAS  PubMed  Google Scholar 

  • Miller D, Wang J, Buchanan A, Hall E (2014) Temporal and spatial dynamics of Nrf2-ARE-mediated gene targets in cortex and hippocampus following controlled cortical impact traumatic brain injury in mice. J Neurotrauma 31:1194–1201

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller DM, Singh IN, Wang JA, Hall ED (2015) Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice. Exp Neurol 264:103–110

    Article  CAS  PubMed  Google Scholar 

  • Monyer H, Hartley DM, Choi DW (1990) 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 5(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kawamata T, Katayama Y, Maeda T, Aoyama N, Kikuchi T, Uwahodo Y (1998) Antioxidant, OPC-14117, attenuates edema formation, and subsequent tissue damage following cortical contusion in rats. Acta Neurochir Suppl (Wien) 71:120–122

    CAS  Google Scholar 

  • Muizelaar JP, Kupiec JW, Rapp LA (1995) PEG-SOD after head injury. J Neurosurg 83(5):942

    PubMed  CAS  Google Scholar 

  • Mustafa AG, Singh IN, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114(1):271–280

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mustafa AG, Wang JA, Carrico KM, Hall ED (2011) Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem 117(3):579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, Bracken MB, Bullock MR, Choi SC, Clifton GL, Contant CF, Coplin WM, Dietrich WD, Ghajar J, Grady SM, Grossman RG, Hall ED, Heetderks W, Hovda DA, Jallo J, Katz RL, Knoller N, Kochanek PM, Maas AI, Majde J, Marion DW, Marmarou A, Marshall LF, McIntosh TK, Miller E, Mohberg N, Muizelaar JP, Pitts LH, Quinn P, Riesenfeld G, Robertson CS, Strauss KI, Teasdale G, Temkin N, Tuma R, Wade C, Walker MD, Weinrich M, Whyte J, Wilberger J, Young AB, Yurkewicz L (2002) Clinical trials in head injury. J Neurotrauma 19(5):503–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozdemir D, Tugyan K, Uysal N, Sonmez U, Sonmez A, Acikgoz O, Ozdemir N, Duman M, Ozkan H (2005a) Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neurosci Lett 385(3):234–239

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir D, Uysal N, Gonenc S, Acikgoz O, Sonmez A, Topcu A, Ozdemir N, Duman M, Semin I, Ozkan H (2005b) Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res 54(6):631–637

    PubMed  CAS  Google Scholar 

  • Panter SS, Braughler JM, Hall ED (1992) Dextran-coupled deferoxamine improves outcome in a murine model of head injury. J Neurotrauma 9:47–53

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 10(3):1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Readnower RD, Pandya JD, McEwen ML, Pauly JR, Springer JE, Sullivan PG (2011) Post-injury administration of the mitochondrial permeability transition pore inhibitor, NIM811, is neuroprotective and improves cognition after traumatic brain injury in rats. J Neurotrauma 28(9):1845–1853

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF (1993) Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol 46(3):525–534

    Article  CAS  PubMed  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF (1996) Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1- pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. Biochem Pharmacol 51(4):471–476

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Izumi M, Shirasawa T, Lipton SA (2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem 104(4):1116–1131

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161(4):1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–3406

    Article  CAS  PubMed  Google Scholar 

  • Singh IN, Sullivan PG, Hall ED (2007) Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. J Neurosci Res 85(10):2216–2223

    Article  CAS  PubMed  Google Scholar 

  • Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED (2013) Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab 33(4):593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SL, Hall ED (1998) Tirilazad widens the therapeutic window for riluzole-induced attenuation of progressive cortical degeneration in an infant rat model of the shaken baby syndrome. J Neurotrauma 15(9):707–719

    Article  CAS  PubMed  Google Scholar 

  • Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11(4):393–404

    Article  CAS  PubMed  Google Scholar 

  • Sonmez U, Sonmez A, Erbil G, Tekmen I, Baykara B (2007) Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci Lett 420(2):133–137

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PG, Thompson MB, Scheff SW (1999) Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160(1):226–234

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24(6):991–999

    Article  PubMed  Google Scholar 

  • Toklu HZ, Hakan T, Biber N, Solakoglu S, Ogunc AV, Sener G (2009) The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radic Res 43(7):658–667

    Article  CAS  PubMed  Google Scholar 

  • Wang X, de Rivero Vaccari JP, Wang H, Diaz P, German R, Marcillo AE, Keane RW (2012) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 29(5):936–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood PL, Khan MA, Moskal JR, Todd KG, Tanay VA, Baker G (2006) Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res 1122(1):184–190

    Article  CAS  PubMed  Google Scholar 

  • Wood PL, Khan MA, Moskal JR (2008) Mechanism of action of the disease-modifying anti-arthritic thiol agents D-penicillamine and sodium aurothiomalate: restoration of cellular free thiols and sequestration of reactive aldehydes. Eur J Pharmacol 580(1–2):48–54

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197(2):309–317

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Peterson PL, Muizelaar JP, Lee CP (1997) Amelioration of mitochondrial function by a novel antioxidant U-101033E following traumatic brain injury in rats. J Neurotrauma 14(12):907–917

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Peterson PL, Verweij BH, Vinas FC, Muizelaar JP, Lee CP (1998) Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma 15(7):531–544

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Shie FS, Zhang J, Lee CP, Ho YS (2005) Prevention of mitochondrial dysfunction in post-traumatic mouse brain by superoxide dismutase. J Neurochem 95(3):732–744

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Wang HD, Hu ZG, Wang QF, Yin HX (2008) Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett 431(2):150–154

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38(4):769–789

    Article  CAS  PubMed  Google Scholar 

  • Zhang JR, Scherch HM, Hall ED (1996) Direct measurement of lipid hydroperoxides in iron-dependent spinal neuronal injury. J Neurochem 66(1):355–361

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Shohami E, Beit-Yannai E, Bass R, Trembovler V, Samuni A (1998) Mechanism of brain protection by nitroxide radicals in experimental model of closed-head injury. Free Radic Biol Med 24(2):332–340

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Squadrito GL, Uppu R, Pryor WA (1999) Reaction of peroxynitrite with melatonin: a mechanistic study. Chem Res Toxicol 12(6):526–534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Portions of the work reviewed in this chapter were supported by funding from 5R01 NS046566, 5P30 NS051220, and 5P01 NS58484 and currently by 5R01 NS083405, 5R01 NS084857 and 1R01 NS100093 and from the Kentucky Spinal Cord & Head Injury Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, E.D., Singh, I.N., Cebak, J.E. (2018). Oxidative Damage Mechanisms in Traumatic Brain Injury and Antioxidant Neuroprotective Approaches. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-77495-4_3

Download citation

Publish with us

Policies and ethics