Skip to main content

Excitotoxic Programmed Cell Death Involves Caspase-Independent Mechanisms

  • Chapter
  • First Online:
Acute Neuronal Injury

Abstract

Excitotoxicity is a common pathological process in many neurologic and neurodegenerative disorders, and this process involves over-stimulation of glutamate receptors and an excessive influx of calcium into cells. Cell death in excitotoxicity is unique in that, for the most part, it does not involve caspase-dependent pathways. Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) is an early pathological event in excitotoxicity that leads to a unique form of cell death called parthanatos. Biochemical events in parthanatos include early accumulation of poly (ADP-ribose) (PAR) and nuclear translocation of apoptosis inducing factor (AIF) from the mitochondria followed by nuclear accumulation of macrophage migration inhibitory factor (MIF). MIF’s nuclease activity serves as the final executioner in excitotoxicity by shredding genomic DNA. Interfering with PARP activation, PAR signaling or MIF nuclease activity offers therapeutic interventions that could protect against a variety of neuronal injury due to a variety of insults involving glutamate excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298(5594):846–850. https://doi.org/10.1126/science.1072873

    Article  PubMed  CAS  Google Scholar 

  • Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010) NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30(8):2967–2978. https://doi.org/10.1523/JNEUROSCI.5552-09.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alano CC, Ying W, Swanson RA (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 279(18):18895–18902. https://doi.org/10.1074/jbc.M313329200

    Article  PubMed  CAS  Google Scholar 

  • Andrabi SA, Kang HC, Haince JF, Lee YI, Zhang J, Chi Z, West AB, Koehler RC, Poirier GG, Dawson TM, Dawson VL (2011) Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat Med 17(6):692–699. https://doi.org/10.1038/nm.2387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103(48):18308–18313. https://doi.org/10.1073/pnas.0606526103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrabi SA, Umanah GK, Chang C, Stevens DA, Karuppagounder SS, Gagne JP, Poirier GG, Dawson VL, Dawson TM (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci U S A 111(28):10209–10214. https://doi.org/10.1073/pnas.1405158111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4–5):325–337

    Article  CAS  PubMed  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61(6):657–668. https://doi.org/10.1007/s00018-003-3319-x

    Article  PubMed  CAS  Google Scholar 

  • Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329(1):18–25. https://doi.org/10.1016/j.yexcr.2014.07.003

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys 271(5 Pt 1):C1424–C1437

    Article  CAS  Google Scholar 

  • Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32(1):12–19. https://doi.org/10.1016/j.tibs.2006.11.006

    Article  PubMed  CAS  Google Scholar 

  • Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR, Hongo JA, Davis D, Kirkpatrick DS, Polakis P, Costa M (2011) Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One 6(7):e22595. https://doi.org/10.1371/journal.pone.0022595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chatterjee S, Berger SJ, Berger NA (1999) Poly(ADP-ribose) polymerase: a guardian of the genome that facilitates DNA repair by protecting against DNA recombination. Mol Cell Biochem 193(1–2):23–30

    Article  CAS  PubMed  Google Scholar 

  • Cozzi A, Cipriani G, Fossati S, Faraco G, Formentini L, Min W, Cortes U, Wang ZQ, Moroni F, Chiarugi A (2006) Poly(ADP-ribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice. J Cereb Blood Flow Metab 26(5):684–695. https://doi.org/10.1038/sj.jcbfm.9600222

    Article  PubMed  CAS  Google Scholar 

  • Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23(16):2785–2796. https://doi.org/10.1038/sj.onc.1207517

    Article  PubMed  CAS  Google Scholar 

  • Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25(44):10262–10272. https://doi.org/10.1523/JNEUROSCI.2818-05.2005

    Article  PubMed  CAS  Google Scholar 

  • D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidovic L, Vodenicharov M, Affar EB, Poirier GG (2001) Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268(1):7–13. https://doi.org/10.1006/excr.2001.5263

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2017) Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol 57:437–454. https://doi.org/10.1146/annurev-pharmtox-010716-105001

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32(3):297–311. https://doi.org/10.1002/ana.410320302

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13(6):2651–2661

    Article  CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 88(14):6368–6371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Murcia G, Menissier de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19(4):172–176

    Article  PubMed  Google Scholar 

  • de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J (1994) Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138(1–2):15–24

    Article  PubMed  Google Scholar 

  • Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3(10):1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016. https://doi.org/10.1111/bph.12416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fossati S, Cipriani G, Moroni F, Chiarugi A (2007) Neither energy collapse nor transcription underlie in vitro neurotoxicity of poly(ADP-ribose) polymerase hyper-activation. Neurochem Int 50(1):203–210. https://doi.org/10.1016/j.neuint.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  • Fouquerel E, Goellner EM, Yu Z, Gagne JP, Barbi de Moura M, Feinstein T, Wheeler D, Redpath P, Li J, Romero G, Migaud M, Van Houten B, Poirier GG, Sobol RW (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 8(6):1819–1831. https://doi.org/10.1016/j.celrep.2014.08.036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Munoz-Pinedo C, Nunez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22(1):58–73. https://doi.org/10.1038/cdd.2014.137

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120. https://doi.org/10.1038/cdd.2011.96

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, Johns DC, Dawson TM, Dawson VL, Crain BJ, Traystman RJ, Mori S, Hurn PD (2002) Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 33(4):1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629. https://doi.org/10.1126/science.1099320

    Article  PubMed  CAS  Google Scholar 

  • Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96(24):13978–13982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H, Miwa M (2004) Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci U S A 101(1):82–86. https://doi.org/10.1073/pnas.2237114100

    Article  PubMed  CAS  Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. https://doi.org/10.1016/j.tibs.2009.12.003

    Article  PubMed  CAS  Google Scholar 

  • Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP, Lee Y, Ko HS, Lee BD, Poirier GG, Dawson VL, Dawson TM (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 108(34):14103–14108. https://doi.org/10.1073/pnas.1108799108

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, Stoger T, Poirier GG, Dawson VL, Dawson TM (2004) Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A 101(51):17699–17704. https://doi.org/10.1073/pnas.0406182101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81(3):179–196. https://doi.org/10.1016/j.pneurobio.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163. https://doi.org/10.1152/physrev.00013.2006

    Article  PubMed  CAS  Google Scholar 

  • Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Karuppagounder SS, Shin JH, Lee YI, Ko HS, Swing D, Jiang H, Kang SU, Lee BD, Kang HC, Kim D, Tessarollo L, Dawson VL, Dawson TM (2013) Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat Neurosci 16(10):1392–1400. https://doi.org/10.1038/nn.3500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Mandir AS, Poitras MF, Berliner AR, Herring WJ, Guastella DB, Feldman A, Poirier GG, Wang ZQ, Dawson TM, Dawson VL (2000) NMDA but not non-NMDA excitotoxicity is mediated by poly(ADP-ribose) polymerase. J Neurosci 20(21):8005–8011

    Article  CAS  PubMed  Google Scholar 

  • Mashimo M, Kato J, Moss J (2013) ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc Natl Acad Sci U S A 110(47):18964–18969. https://doi.org/10.1073/pnas.1312783110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1–3):6–18. https://doi.org/10.1016/j.ejphar.2012.10.032

    Article  PubMed  CAS  Google Scholar 

  • Meldrum BS (1992) Excitatory amino acid receptors and disease. Curr Opin Neurol Neurosurg 5(4):508–513

    PubMed  CAS  Google Scholar 

  • Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297(2):521–532. https://doi.org/10.1016/j.yexcr.2004.03.050

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16(5):264–272. https://doi.org/10.1016/j.tcb.2006.03.008

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258(5082):597–603

    Article  CAS  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490

    Article  CAS  PubMed  Google Scholar 

  • Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713. https://doi.org/10.1074/jbc.M510290200

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166(3903):386–388

    Article  CAS  PubMed  Google Scholar 

  • Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, Ebersberger I, Nakashima T, Sarao R, Neely G, Esterbauer H, Kozlov A, Kahn CR, Kroemer G, Rustin P, Burcelin R, Penninger JM (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131(3):476–491. https://doi.org/10.1016/j.cell.2007.08.047

    Article  PubMed  CAS  Google Scholar 

  • Richter BW, Duckett CS (2000) The IAP proteins: caspase inhibitors and beyond. Sci STKE 2000(44):pe1. https://doi.org/10.1126/stke.2000.44.pe1

    Article  PubMed  CAS  Google Scholar 

  • Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391(6662):96–99. https://doi.org/10.1038/34214

    Article  PubMed  CAS  Google Scholar 

  • Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28(6):1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Soriano FX, Martel MA, Papadia S, Vaslin A, Baxter P, Rickman C, Forder J, Tymianski M, Duncan R, Aarts M, Clarke P, Wyllie DJ, Hardingham GE (2008) Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J Neurosci 28(42):10696–10710. https://doi.org/10.1523/JNEUROSCI.1207-08.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun HS, Doucette TA, Liu Y, Fang Y, Teves L, Aarts M, Ryan CL, Bernard PB, Lau A, Forder JP, Salter MW, Wang YT, Tasker RA, Tymianski M (2008) Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39(9):2544–2553. https://doi.org/10.1161/STROKEAHA.107.506048

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446. https://doi.org/10.1038/17135

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19(7):287–298

    Article  CAS  PubMed  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632. https://doi.org/10.1038/nrm2952

    Article  PubMed  CAS  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54(3):375–429

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24(48):10963–10973. https://doi.org/10.1523/JNEUROSCI.3461-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, Chen R, Wang JE, Kam TI, Jeong JS, Xie Z, Neifert S, Qian J, Andrabi SA, Blackshaw S, Zhu H, Song H, Ming GL, Dawson VL, Dawson TM (2016) A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 354(6308):aad6872. https://doi.org/10.1126/science.aad6872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):ra20. https://doi.org/10.1126/scisignal.2000902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A 93(13):6770–6774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JC, Fan J, Wang X, Eacker SM, Kam TI, Chen L, Yin X, Zhu J, Chi Z, Jiang H, Chen R, Dawson TM, Dawson VL (2016) Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity. Sci Transl Med 8(333):333ra348. https://doi.org/10.1126/scitranslmed.aad0623

    Article  CAS  Google Scholar 

  • Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103(48):18314–18319. https://doi.org/10.1073/pnas.0606528103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263. https://doi.org/10.1126/science.1072221

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263(5147):687–689

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F (2011) RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 13(5):623–629. https://doi.org/10.1038/ncb2222

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. Elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants NS38377, NS67525, and DA00266. The authors thank I-Hsun Wu for assistance with the illustrations. T. M. D. is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted M. Dawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dawson, T.M., Dawson, V.L. (2018). Excitotoxic Programmed Cell Death Involves Caspase-Independent Mechanisms. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-77495-4_1

Download citation

Publish with us

Policies and ethics