Skip to main content

Moving Horizon Estimation

  • Chapter
  • First Online:
Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

Nearly every model predictive control (MPC) algorithm is premised on knowledge of the system’s state. As a result, state estimation is vital to good MPC performance. Moving horizon estimation (MHE) is an optimization-based state estimation algorithm. Similar to MPC, it relies on the minimization of a sum of stage costs subject to a dynamic model. Unlike MPC, however, conditions under which MHE is robustly stable have been slow to emerge. Recently, several results have appeared about the robust stability of MHE. We generalize the result on the robust stability of MHE without a max-term presented in Müller (Automatica 79:306–314, 2017). using assumptions inspired by the result in Hu (Robust stability of optimization-based state estimation under bounded disturbances. ArXiv e-prints, 2017). Furthermore, we show that all systems that are covered by the assumptions used in those previous works satisfy a certain form of exponential incremental input/output-to-state stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://jbrwww.che.wisc.edu/home/jbraw/mpc/figures.html.

  2. 2.

    Available at www.casadi.org.

  3. 3.

    Available at https://bitbucket.org/rawlings-group/octave-mpctools.

References

  1. Andersson, J.: A general-purpose software framework for dynamic optimization. Ph.D. thesis, Arenberg Doctoral School, KU Leuven (2013)

    Google Scholar 

  2. Findeisen, P.K.: Moving horizon state estimation of discrete time systems. Master’s thesis, University of Wisconsin-Madison (1997)

    Google Scholar 

  3. Haseltine, E.L., Rawlings, J.B.: Critical evaluation of extended Kalman filtering and moving horizon estimation. Ind. Eng. Chem. Res. 44(8), 2451–2460 (2005)

    Article  Google Scholar 

  4. Hu, W.: Robust stability of optimization-based state estimation under bounded disturbances. ArXiv e-prints (2017)

    Google Scholar 

  5. Hu, W., Xie, L., You, K.: Optimization-based state estimation under bounded disturbances. In: 2015 54th IEEE Conference on Decision and Control CDC, pp. 6597–6602 (2015). https://doi.org/10.1109/CDC.2015.7403258

  6. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  7. Ji, L., Rawlings, J.B., Hu, W., Wynn, A., Diehl, M.M.: Robust stability of moving horizon estimation under bounded disturbances. IEEE Trans. Autom. Control 61(11), 3509–3514 (2016)

    Article  MathSciNet  Google Scholar 

  8. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  9. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  10. Meadows, E.S., Muske, K.R., Rawlings, J.B.: Constrained state estimation and discontinuous feedback in model predictive control. In: Proceedings of the 1993 European Control Conference, pp. 2308–2312. European Automatic Control Council (1993)

    Google Scholar 

  11. Michalska, H., Mayne, D.Q.: Moving horizon observers and observer-based control. IEEE Trans. Autom. Control 40(6), 995–1006 (1995)

    Article  MathSciNet  Google Scholar 

  12. Müller, M.A.: Nonlinear moving horizon estimation for systems with bounded disturbances. In: 2016 American Control Conference ACC, pp. 883–888 (2016). https://doi.org/10.1109/ACC.2016.7525026

  13. Müller, M.A.: Nonlinear moving horizon estimation in the presence of bounded disturbances. Automatica 79, 306–314 (2017). https://doi.org/10.1016/j.automatica.2017.01.033. http://www.sciencedirect.com/science/article/pii/S0005109817300432

  14. Muske, K.R., Rawlings, J.B., Lee, J.H.: Receding horizon recursive state estimation. In: Proceedings of the 1993 American Control Conference, pp. 900–904 (1993)

    Google Scholar 

  15. Pannocchia, G., Rawlings, J.B.: Disturbance models for offset-free MPC control. AIChE J. 49(2), 426–437 (2003)

    Article  Google Scholar 

  16. Rajamani, R.: Observers for nonlinear systems: part 2: an overview of the special issue. IEEE Control Syst. Mag. 37(4), 30–32 (2017). https://doi.org/10.1109/MCS.2017.2696758

    Article  MathSciNet  Google Scholar 

  17. Rajamani, R.: Observers for nonlinear systems: introduction to part 1 of the special issue. IEEE Control Syst. Mag. 37(3), 22–24 (2017). https://doi.org/10.1109/MCS.2017.2674400

    Article  Google Scholar 

  18. Rao, C.V.: Moving horizon strategies for the constrained monitoring and control of nonlinear discrete-time systems. Ph.D. thesis, University of Wisconsin-Madison (2000)

    Google Scholar 

  19. Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control 48(2), 246–258 (2003)

    Article  MathSciNet  Google Scholar 

  20. Rawlings, J.B., Ji, L.: Optimization-based state estimation: current status and some new results. J. Process Control 22, 1439–1444 (2012)

    Article  Google Scholar 

  21. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design, 576 p. Nob Hill Publishing, Madison, WI (2009). ISBN 978-0-9759377-0-9

    Google Scholar 

  22. Rawlings, J.B., Risbeck, M.J.: On the equivalence between statements with epsilon-delta and K-functions. Technical Report 2015–01, TWCCC Technical Report (2015). http://jbrwww.che.wisc.edu/tech-reports/twccc-2015-01.pdf

  23. Rawlings, J.B., Mayne, D.Q., Diehl, M.M.: Model Predictive Control: Theory, Design, and Computation, 2nd edn., 770 p. Nob Hill Publishing, Madison, WI (2017). ISBN 978-0-9759377-3-0

    Google Scholar 

  24. Romanenko, A., Castro, J.A.A.M.: The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study. Comput. Chem. Eng. 28(3), 347–355 (2004)

    Article  Google Scholar 

  25. Romanenko, A., Santos, L.O., Afonso, P.A.F.N.A.: Unscented Kalman filtering of a simulated pH system. Ind. Eng. Chem. Res. 43, 7531–7538 (2004)

    Article  Google Scholar 

  26. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989). https://doi.org/10.1109/9.28018

    Article  MathSciNet  Google Scholar 

  27. Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  28. Sontag, E.D., Wang, Y.: Output-to-state stability and detectability of nonlinear systems. Syst. Control Lett. 29, 279–290 (1997)

    Article  MathSciNet  Google Scholar 

  29. Tenny, M.J., Rawlings, J.B.: Efficient moving horizon estimation and nonlinear model predictive control. In: Proceedings of the American Control Conference, pp. 4475–4480. Anchorage, Alaska (2002)

    Google Scholar 

  30. Vachhani, P., Narasimhan, S., Rengaswamy, R.: Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation. J. Process Control 16(10), 1075–1086 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Allan .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof (Proposition 1)

Without loss of generality, assume that x 0 = 0 and that V (0) = 0. Because V (⋅ ) is Lipschitz continuous at the origin, there exists some δ > 0 and L > 0 such that if \(\left \vert x\right \vert \leq \delta\) we have that \(\left \vert V (x)\right \vert \leq L\left \vert x\right \vert\). Let \((\overline{s}(n))\) be a strictly increasing and unbounded sequence such that \(\overline{s}(n)>\delta\) for all \(n \in \mathbb{I}_{\geq 0}\). Define a sequence \((\tilde{M}(n))\) such that

$$\displaystyle{ \tilde{M}(n)\,:=\,\sup _{x\in \mathcal{C}}\left \vert V (x)\right \vert \quad \text{ subject to }\left \vert x\right \vert \leq \overline{s}(n) }$$

for all \(n \in \mathbb{I}_{\geq 0}\). We have that \(\tilde{M}(n)\) is finite for all \(n \in \mathbb{I}_{\geq 0}\) because V (⋅ ) is locally bounded. Define another sequence \((M(n))\) such that

$$\displaystyle{ M(n)\,:=\,\max (\tilde{M}(n),L\delta ) }$$

Note that (M(n)) is a nondecreasing sequence. Now define a piecewise linear function

$$\displaystyle{ \tilde{\alpha }(s)\,:=\,\left \{\begin{array}{@{}l@{\quad }l@{}} Ls \quad &\text{if }s \in [0,\delta /2] \\ \frac{L\delta } {2} + (M(0) - L\delta /2)\frac{s-\delta /2} {\delta /2} \quad &\text{if }s \in (\delta /2,\delta ] \\ M(0) + (M(1) - M(0)) \frac{s-\delta } {\overline{s}(0)-\delta } \quad &\text{if }s \in (\delta,\overline{s}(0)] \\ M(n) + (M(n + 1) - M(n)) \frac{s-\overline{s}(n-1)} {\overline{s}(n)-\overline{s}(n-1)}\quad &\text{if }s \in (\overline{s}(n - 1),\overline{s}(n)] \end{array} \right. }$$

The function \(\tilde{\alpha }(s)\) is continuous, nondecreasing, and \(\tilde{\alpha }(0) = 0\). Furthermore, because it is piecewise-linear, it is locally Lipschitz. Because \(\tilde{\alpha }(\overline{s}(n - 1)) = M(n)\), we also have that

$$\displaystyle{ \left \vert V (x)\right \vert \leq M(n) \leq \tilde{\alpha } (\left \vert x\right \vert )\quad \text{if }\left \vert x\right \vert \in (\overline{s}(n - 1),\overline{s}(n)] }$$

We have a similar bound for \(\left \vert x\right \vert \in (\delta,\overline{s}(0)]\). Finally, from the Lipschitz bound, we have that \(\left \vert V (x)\right \vert \leq \tilde{\alpha } (\left \vert x\right \vert )\) if xδ and thus for all \(x \in \mathcal{ C}\). Finally, let \(\alpha (s)\,:=\,s +\tilde{\alpha } (s)\). We have that α(⋅ ) is strictly increasing, continuous, zero at the origin, and asymptotically unbounded. Thus \(\alpha (\cdot ) \in \mathcal{ K}_{\infty }\). Furthermore, α(⋅ ) is piecewise-linear and thus locally Lipschitz, and is therefore the required bound.

Proof (Proposition 2)

We prove this proposition by showing first that Statement 1 implies Statement 2, next that Statement 2 implies Statement 3, and then finally that Statement 3 implies Statement 4. Because Statement 4 is a restatement of Statement 1 with a particular form of the \(\mathcal{L}\) function, the proof is then complete.

Proof (Statement 1 Implies Statement 2 (adapted from [1], Lemma 6))

Fix η ∈ (0, 1) and \(\overline{s}> 0\). We seek to find T such that σ x(s)ϕ(T) ≤ ηs for all \(s \leq \overline{s}\). This condition is equivalent to ϕ(T) ≤ ηsσ x(s) for all \(s \in \left (0,\overline{s}\right ]\) and ϕ(T) ≤ ηlims↓0 sσ x(s). Because σ x(s) is Lipschitz continuous at zero, there exists some L > 0 and δ > 0 such that σ x(s) ≤ Ls for 0 ≤ sδ. Thus, we have that sσ x(s) ≥ s∕(sL) = 1∕L > 0 for sδ. Furthermore, sσ x(s) > 0 and sσ x(s) is continuous for all s > 0. Thus we have that \(\inf _{s\leq \overline{s}}s/\sigma _{x}(s)\,:=\,\zeta> 0\). Finally, we require T such that ϕ(T) ≤ ηζsσ x(s) for \(s \leq \overline{s}\). Because both η, ζ > 0 and \(\phi (\cdot ) \in \mathcal{ L}\), there exists a T that fulfills this condition. Finally, because σ x(s) is Lipschitz at the origin, we have that β(s, 0) is Lipschitz at s = 0.

Remark 3

Because the only place where sσ x(s) might equal zero is at s = 0, this proof also implies that if there exists a single \(\overline{s}> 0\), η ∈ (0, 1), and T > 0 such that σ x(s)ϕ(T) ≤ ηs for all \(s \in [0,\overline{s}]\), then we can find such a T for every \(\overline{s}> 0\).

Proof (Statement 2 Implies Statement 3)

For brevity, we define \(x_{1}(k) - x_{2}(k)\,:=\,\varDelta x(k)\), \(\mathbf{w}_{1} -\mathbf{w}_{2}\,:=\,\varDelta \mathbf{w}\), and \(\mathbf{y}_{1} -\mathbf{y}_{2}\,:=\,\varDelta \mathbf{y}\). Fix \(\overline{s}> 0\) and choose T such that β(s, T) ≤ ηs for all \(s \in [0,\overline{s}]\). First, we prove by induction in n that

$$\displaystyle{ \left \vert \varDelta x(k + nT)\right \vert \leq \eta ^{n}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k+nT-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+nT-1}) }$$
(4)

for all k ≥ 0 and n ≥ 1 if \(\varDelta x(0) \leq \overline{s}\).

Base Case Suppose that \(\varDelta x(0) \leq \overline{s}\). Then we have that

$$\displaystyle\begin{array}{rcl} \left \vert \varDelta x(k + T)\right \vert & \leq & \beta (\varDelta x(0),k + T) \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k+T-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+T-1}) {}\\ & \leq & \beta (\varDelta x(0),T) \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k+T-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+T-1}) {}\\ & \leq & \eta \left \vert \varDelta x(0)\right \vert \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k+T-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+T-1}) {}\\ \end{array}$$

by the fact that β(⋅ ) is nonincreasing in its second argument and by Statement 2.

Inductive Case Suppose that (4) holds for some \(n \in \mathbb{I}_{\geq 0}\). We have that

$$\displaystyle{ \left \vert \varDelta x(k + nT)\right \vert \leq \eta ^{n}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k+nT-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+nT-1}) }$$

for all k ≥ 0. Suppose further that

$$\displaystyle{ \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k+nT-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+nT-1})> \overline{s} }$$

We then apply the original i-IOSS bound to obtain

$$\displaystyle\begin{array}{rcl} \left \vert \varDelta x(k + (n + 1)T)\right \vert \leq \beta (\left \vert \varDelta x(0)\right \vert,k + (n + 1)T)& \oplus & \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k+(n+1)T-1}) {}\\ & \oplus & \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+(n+1)T-1}) {}\\ \end{array}$$

Furthermore, we have that

$$\displaystyle{ \beta (\left \vert \varDelta x(0)\right \vert,k + nT) \leq \beta (\left \vert \varDelta x(0)\right \vert,T) \leq \eta \left \vert \varDelta x(0)\right \vert \leq \eta \overline{s} <\overline{s} }$$

Thus we have that the \(\mathcal{KL}\) function bound is unnecessary, and therefore we have that

$$\displaystyle\begin{array}{rcl} \left \vert \varDelta x(k + (n + 1)T)\right \vert & \leq & \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k+(n+1)T-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+(n+1)T-1}) {}\\ & \leq & \eta ^{n+1}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k+(n+1)T-1}) {}\\ & & \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+(n+1)T-1}) {}\\ \end{array}$$

trivially. Now suppose that

$$\displaystyle{ \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k+nT-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+nT-1}) \leq \overline{s} }$$

Because we have that \(\eta ^{n}\left \vert \varDelta x(0)\right \vert \leq \overline{s}\), we have that \(\left \vert \varDelta x(k + nT)\right \vert \leq \overline{s}\) so we can apply the i-IOSS bound from \(\varDelta x(k + nT)\) to obtain

$$\displaystyle\begin{array}{rcl} \left \vert \varDelta x(k + (n + 1)T)\right \vert & \leq & \beta (\left \vert \varDelta x(k + nT)\right \vert,T) \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{k+nT:k+(n+1)T-1}) {}\\ & & \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{k+nT:k+(n+1)T-1}) {}\\ & \leq & \eta \left \vert \varDelta x(k + nT)\right \vert \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{k+nT:k+(n+1)T-1}) {}\\ & & \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{k+nT:k+(n+1)T-1}) {}\\ & \leq & \eta ^{n+1}\left \vert \varDelta x(0)\right \vert \oplus \eta \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k+nT-1}) {}\\ & & \oplus \eta \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+nT-1}) \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{k+nT:k+(n+1)T-1}) {}\\ & & \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{k+nT:k+(n+1)T-1}) {}\\ & \leq & \eta ^{n+1}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k+(n+1)T-1}) {}\\ & & \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+(n+1)T-1}) {}\\ \end{array}$$

Thus we have that (4) for n implies (4) for n + 1, completing the proof by induction.

Now we bound \(\left \vert \varDelta x(k)\right \vert\) for \(k \in \mathbb{I}_{0:T-1}\). We have that

$$\displaystyle\begin{array}{rcl} \left \vert \varDelta x(k)\right \vert & \leq & \beta (\left \vert \varDelta x(0)\right \vert,k) \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) {}\\ & \leq & \beta (\left \vert \varDelta x(0)\right \vert,0) \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) {}\\ \end{array}$$

because β(⋅ ) is nonincreasing in its second argument. Because β(s, 0) is Lipschitz at s = 0, by Proposition 1 there exists some locally Lipschitz function \(\bar{\alpha }(\cdot ) \in \mathcal{ K}_{\infty }\) such that \(\beta (s,0) \leq \bar{\alpha } (s)\) for all \(s \in \mathbb{R}_{\geq 0}\). Because \(\bar{\alpha }(\cdot )\) is locally Lipschitz and β(s, 0) ≥ s, there exists some K ≥ 1 such that for all \(s \in [0,\overline{s}]\), we have that \(\bar{\alpha }(s) \leq Ks\). Thus we have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq K\left \vert \varDelta x(0)\right \vert \oplus \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$
(5)

for all \(\varDelta x(0)\) such that \(\left \vert \varDelta x(0)\right \vert \leq \overline{s}\). Because we have that (4) holds for n ≥ 1 and k ≥ 0 and that (5) holds for n = 0 and k ≥ 0, we can combine these equations to write

$$\displaystyle{ \left \vert \varDelta x(k + nT)\right \vert \leq K\eta ^{n}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k+nT-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k+nT-1}) }$$

for all \(\varDelta x\) such that \(\left \vert \varDelta x\right \vert \leq \overline{s}\). We can then eliminate the index n using the floor function \(\lfloor \cdot \rfloor\) to obtain the bound

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq K\eta ^{\lfloor k/T\rfloor }\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

Note that \(\eta ^{\lfloor k/T\rfloor }\leq (1/\eta )\eta ^{k/T}\), so we have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq (K/\eta )\eta ^{k/T}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

Finally, let C : = Kη and λ : = η 1∕T. We have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq C\lambda ^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for all \(\varDelta x(0)\) such that \(\left \vert \varDelta x(0)\right \vert \leq \overline{s}\).

Proof (Statement 3 Implies 4)

We prove this statement in two steps. We first show that although both λ and C in Statement 3 depend on \(\overline{s}\), the dependence of λ on \(\overline{s}\) can be removed by increasing \(C(\overline{s})\). We can remove this dependence because the term dependent on the initial conditions decays to be less than some smaller \(\overline{s}\) within finite time. We then turn the function \(C(\overline{s})s\) into a \(\mathcal{K}_{\infty }\) function.

First, let \((\overline{s}(n))\) be a strictly increasing and unbounded sequence such that \(\overline{s}(n)> 0\) for all \(n \in \mathbb{I}_{1:\infty }\). By Statement 3, there exists sequences \((C(n))\) and \((\lambda (n))\) such that C(n) ≥ 1 and λ(n) ∈ (0, 1) and that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq C(n)\lambda (n)^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for all \(\varDelta x(0)\) such that \(\left \vert \varDelta x(0)\right \vert \leq \overline{s}(n)\) for all \(n \in \mathbb{I}_{1:\infty }\). Without loss of generality, assume that (C(n)) and that (λ(n)) are nondecreasing. Let \(\underline{\lambda }\,:=\,\lambda (1)\). We prove by induction that there exists a sequence \( (\tilde{C}(n)) \) such that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq \tilde{ C}(n)\underline{\lambda }^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for all \(\varDelta x(0)\) such that \(\left \vert \varDelta x(0)\right \vert \leq \overline{s}(n)\) and all \(n \in \mathbb{I}_{1:\infty }\). The base case is given by Statement 3 for \(\overline{s}(1)\).

Inductive Case Suppose for some n we have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq \tilde{ C}(n)\underline{\lambda }^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for all \(\varDelta x(0)\) such that \(\left \vert \varDelta x(0)\right \vert \leq \overline{s}(n)\). We also have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq C(n + 1)\lambda (n + 1)^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for all \(\varDelta x(0)\) such that \(\left \vert \varDelta x(0)\right \vert \leq \overline{s}(n + 1)\). Let

$$\displaystyle{ N\,:=\,\lceil \log _{\lambda (n+1)}\left ( \frac{\overline{s}(n)} {\overline{s}(n + 1)C(n + 1)}\right )\rceil }$$

in which \(\lceil \cdot \rceil\) is the ceiling function. For all \(\varDelta x(0)\) such that \(\left \vert \varDelta x(0)\right \vert \leq \overline{s}(n + 1)\), we have that \(C(n + 1)\lambda ^{N}\left \vert \varDelta x(0)\right \vert \leq \overline{s}(n)\). Suppose that \(\gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) <C(n + 1)\lambda ^{N}\left \vert \varDelta x(0)\right \vert\). Then we have that \(\left \vert \varDelta x(k)\right \vert \leq C(n + 1)\lambda ^{N}\left \vert \varDelta x(0)\right \vert\) alone, and thus we can apply the bound for all \(\varDelta x(0) \leq \overline{s}(n)\) to obtain for all kN that

$$\displaystyle\begin{array}{rcl} \left \vert \varDelta x(k)\right \vert & \leq & \tilde{C}(n)\underline{\lambda }^{k-N}\left \vert \varDelta x(N)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{N:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{N:k-1}) {}\\ & \leq & \tilde{C}(n)\underline{\lambda }^{k-N}C(n + 1)\lambda (n + 1)^{N}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) {}\\ & & \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) {}\\ & =& \frac{\tilde{C}(n)C(n + 1)\lambda (n + 1)^{N}} {\underline{\lambda }^{N}} \underline{\lambda }^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) {}\\ & & \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) {}\\ \end{array}$$

Define

$$\displaystyle{ \tilde{C}(n + 1)\,:=\,\tilde{C}(n)C(n + 1)\left (\frac{\lambda (n + 1)} {\underline{\lambda }} \right )^{N} }$$

and we have the required bound. Now suppose that \(\gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) \geq C(n + 1)\lambda ^{N}\left \vert \varDelta x(0)\right \vert\). Then, because the \(\mathcal{KL}\) function is nonincreasing, we have that

$$\displaystyle\begin{array}{rcl} \left \vert \varDelta x(k)\right \vert & \leq & \gamma _{w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) {}\\ & \leq & \tilde{C}(n + 1)\underline{\lambda }^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) {}\\ \end{array}$$

which is the required bound. Both of these bounds apply for kN. For k < N, note that

$$\displaystyle\begin{array}{rcl} C(n + 1)\lambda (n + 1)^{k}& =& \frac{C(n + 1)\lambda (n + 1)^{k}} {\underline{\lambda }^{k}} \underline{\lambda }^{k} {}\\ & \leq & \frac{C(n + 1)\lambda (n + 1)^{N}} {\underline{\lambda }^{N}} \underline{\lambda }^{k} {}\\ & \leq & \tilde{C}(n + 1)\underline{\lambda }^{k} {}\\ \end{array}$$

because \(\underline{\lambda }\leq \lambda (n + 1)\). Therefore we also have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq \tilde{ C}(n + 1)\underline{\lambda }^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for k < N and thus for all \(k \in \mathbb{I}_{\geq 0}\). Thus the statement is proven for n + 1, and the first part of the proof is complete.

Next, define

$$\displaystyle{ \tilde{\alpha }(s)\,:=\,\left \{\begin{array}{@{}l@{\quad }l@{}} C(1)s\quad &\text{if }s \in [0,\overline{s}(1)]\\ C(n)s\quad &\text{if } s \in (\overline{s } (n - 1),\overline{s}(n)]\text{ for }n \geq 2 \end{array} \right. }$$

Note that this function is Lipschitz continuous at the origin and locally bounded. Furthermore, note that by construction we have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq \tilde{\alpha } (\left \vert \varDelta x(0)\right \vert )\underline{\lambda }^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for all \(\varDelta x(0)\). By Proposition 1, there exists a locally Lipschitz function \(\alpha (\cdot ) \in \mathcal{ K}_{\infty }\) such that \(\tilde{\alpha }(s) \leq \alpha (s)\) for all \(s \in \mathbb{R}_{\geq 0}\). Thus we have that

$$\displaystyle{ \left \vert \varDelta x(k)\right \vert \leq \alpha (\left \vert \varDelta x(0)\right \vert )\underline{\lambda }^{k}\left \vert \varDelta x(0)\right \vert \oplus \gamma _{ w}(\|\varDelta \mathbf{w}\|_{0:k-1}) \oplus \gamma _{y}(\|\varDelta \mathbf{y}\|_{0:k-1}) }$$

for all \(\varDelta x(0)\), and so the result is established.

Proof (Proposition 3)

By Assumptions 2 and 3, the MHE problem has a solution \((\hat{x}(0),\widehat{\mathbf{d}})\). Denote the estimated state at time k within the MHE problem as \(\hat{x}(k)\). By Assumption 3, we have that

$$\displaystyle{ \rho \underline{\gamma }_{p}(\left \vert \hat{e}_{p}\right \vert ) \oplus \underline{\gamma }_{s}(\|\widehat{\mathbf{d}}\|_{0:N-1}) \leq \rho \underline{\gamma }_{p}(\left \vert \hat{e}_{p}\right \vert ) +\underline{\gamma } _{s}(\|\widehat{\mathbf{d}}\|_{0:N-1}) \leq V _{N}(\hat{x}(0),\widehat{\mathbf{d}},\overline{x}) }$$

in which \(\hat{e}_{p}\,:=\,\overline{x} -\hat{ x}(0)\). Furthermore, by optimality, we have that

$$\displaystyle\begin{array}{rcl} V _{N}(\hat{x}(0),\widehat{\mathbf{d}},\overline{x})& \leq & V _{N}(x(0),\mathbf{d},\overline{x}) {}\\ & \leq & \rho \overline{\gamma }_{p}(\left \vert e_{p}\right \vert ) + N\overline{\gamma }_{s}(\|\mathbf{d}\|_{0:N-1}) {}\\ & \leq & 2\rho \overline{\gamma }_{p}(\left \vert e_{p}\right \vert ) \oplus 2N\overline{\gamma }_{s}(\|\mathbf{d}\|_{0:N-1}) {}\\ \end{array}$$

Combining these bounds and rearranging, we obtain the following bounds

$$\displaystyle\begin{array}{rcl} \left \vert \hat{e}_{p}\right \vert & \leq & \underline{\gamma }_{p}^{-1}(2\overline{\gamma }_{ p}(\left \vert e_{p}\right \vert ) \oplus (2N/\rho )\overline{\gamma }_{s}(\|\mathbf{d}\|_{0:N-1})) \\ & =& \underline{\gamma }_{p}^{-1}(2\overline{\gamma }_{ p}(\left \vert e_{p}\right \vert )) \oplus \underline{\gamma }_{p}^{-1}((2N/\rho )\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1})){}\end{array}$$
(6)
$$\displaystyle\begin{array}{rcl} \|\widehat{\mathbf{d}}\|& \leq & \underline{\gamma }_{s}^{-1}(2\rho \overline{\gamma }_{ p}(\left \vert e_{p}\right \vert ) \oplus 2N\overline{\gamma }_{s}(\|\mathbf{d}\|_{0:N-1})) \\ & =& \underline{\gamma }_{s}^{-1}(2\rho \overline{\gamma }_{ p}(\left \vert e_{p}\right \vert )) \oplus \underline{\gamma }_{s}^{-1}(2N\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1})){}\end{array}$$
(7)

From the system’s i-IOSS bound, we have that

$$\displaystyle\begin{array}{rcl} \left \vert e(k)\right \vert & \leq & \beta (\left \vert e(0)\right \vert,k) \oplus \gamma _{d}(\|\mathbf{d} -\widehat{\mathbf{d}}\|_{0:N-1}) {}\\ & =& \beta (\left \vert \hat{x}(0) -\overline{x} + \overline{x} - x(0)\right \vert,k) \oplus \gamma _{d}(\|\mathbf{d} -\widehat{\mathbf{d}}\|_{0:N-1}) {}\\ & \leq & \beta (\left \vert e_{p}\right \vert + \left \vert \hat{e}_{p}\right \vert,k) \oplus \gamma _{d}(\|\mathbf{d}\|_{0:N-1} +\|\widehat{ \mathbf{d}}\|_{0:N-1}) {}\\ & \leq & \beta (2\left \vert e_{p}\right \vert \oplus 2\left \vert \hat{e}_{p}\right \vert,k) \oplus \gamma _{d}(2\|\mathbf{d}\|_{0:N-1} \oplus 2\|\widehat{\mathbf{d}}\|_{0:N-1}) {}\\ & & {}\\ \end{array}$$

We next substitute (6) and (7) into this expression.

$$\displaystyle\begin{array}{rcl} \left \vert e(k)\right \vert & \leq & \beta (2\left \vert e_{p}\right \vert \oplus 2\underline{\gamma }_{p}^{-1}(2\overline{\gamma }_{ p}(\left \vert e_{p}\right \vert )) \oplus 2\underline{\gamma }_{p}^{-1}((2N/\rho )\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1})),k) {}\\ & & \oplus \gamma _{d}(2\|\mathbf{d}\|_{0:N-1} \oplus 2\underline{\gamma }_{s}^{-1}(2\rho \overline{\gamma }_{ p}(\left \vert e_{p}\right \vert )) \oplus 2\underline{\gamma }_{s}^{-1}(2N\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1}))) {}\\ & =& \beta (2\left \vert e_{p}\right \vert,k) \oplus \beta (2\underline{\gamma }_{p}^{-1}(2\overline{\gamma }_{ p}(\left \vert e_{p}\right \vert )),k) \oplus \gamma _{d}(2\underline{\gamma }_{s}^{-1}(2\rho \overline{\gamma }_{ p}(\left \vert e_{p}\right \vert ))) {}\\ & & \oplus \beta (2\underline{\gamma }_{p}^{-1}((2N/\rho )\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1})),k) \oplus \gamma _{d}(2\|\mathbf{d}\|_{0:N-1}) {}\\ & & \oplus \gamma _{d}(\underline{\gamma }_{s}^{-1}(2N\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1}))) {}\\ \end{array}$$

Note that because \(\underline{\gamma }_{p}(s) \leq \overline{\gamma }_{p}(s) \leq 2\overline{\gamma }_{p}(s)\), we have that \(s \leq \underline{\gamma }_{p}^{-1}(2\overline{\gamma }_{p}(s))\). A similar argument follows for \(\underline{\gamma }_{s}(\cdot )\) and \(\overline{\gamma }_{s}(\cdot )\). Thus we have that the term \(\beta (2\left \vert e_{p}\right \vert,k) \leq \beta (2\underline{\gamma }_{p}^{-1}(2\overline{\gamma }_{p}(\left \vert e_{p}\right \vert )),k)\) and the term \(\gamma _{d}(2\|\mathbf{d}\|_{0:N-1}) \leq \gamma _{d}(\underline{\gamma }_{s}^{-1}(2N\overline{\gamma }_{s}(\|\mathbf{d}\|_{0:N-1})))\), so we can eliminate them from the maximization. Thus we have

$$\displaystyle\begin{array}{rcl} \left \vert e(k)\right \vert & \leq & \beta (2\underline{\gamma }_{p}^{-1}(2\overline{\gamma }_{ p}(\left \vert e_{p}\right \vert )),k) \oplus \gamma _{d}(2\underline{\gamma }_{s}^{-1}(2\rho \overline{\gamma }_{ p}(\left \vert e_{p}\right \vert ))) {}\\ & & \oplus \beta (2\underline{\gamma }_{p}^{-1}((2N/\rho )\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1})),k) \oplus \gamma _{d}(\underline{\gamma }_{s}^{-1}(2N\overline{\gamma }_{ s}(\|\mathbf{d}\|_{0:N-1}))) {}\\ \end{array}$$

for all k ≥ 0, which is the desired result.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allan, D.A., Rawlings, J.B. (2019). Moving Horizon Estimation. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_5

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics