Quantum Mechanics of the Cell: An Emerging Field

  • Mohammad Ashrafuzzaman


Cell is generally considered a classical system. The molecular structures inside it appear with ultra-level complexities. General physics concepts help construct popular biophysics techniques to understand the energy states and physiological functions of various cellular structures. Besides using statistical mechanics, classical mechanics, and other general physics rules, it is also found recently that quantum mechanics may be utilized to understand some of the crucial cellular aspects.


  1. Chance, B., Nishimura, M. 1960. The mechanism of chlorophyll-cytochrome interaction: the temperature insensitivity of light-induced cytochrome oxidation in Chromatium. Proc. US Nat. Acad. Sci., 46, 19–24.Google Scholar
  2. Vredenberg, W.J., Duysens, L.N.M. 1964. Light-induced oxidation of cytochromes photosynthetic bacteria between 20 and-170°. Biochim. Biophys. Acta, 79, 456–463.Google Scholar
  3. Devault, D., Parkes, J.H., Chance, B. 1967. Electron Tunnelling in Cytochromes. Nature 215, 642–644.Google Scholar
  4. Ashrafuzzaman, Md., Tuszynski, J., Membrane Biophysics, Springer (Heidelberg), 2012, ISSN 1618-7210, ISBN 978-3-642-16104-9 ISBN 978-3-642-16105-6 (eBook),
  5. Ashrafuzzaman M, Tseng CY, Tuszynski JA. Regulation of channel function due to physical energetic coupling with a lipid bilayer. Biochem Biophys Res Commun. 2014 Mar 7;445(2):463–8.Google Scholar
  6. Md. Ashrafuzzaman. Phenomenology and energetics of diffusion across cell phase states. Saudi J. Biol. Sci. (2015a), 22, 666–673.Google Scholar
  7. Md. Ashrafuzzaman. Diffusion across cell phase states. Biomedical Sciences Today (2015b), 1:e4.Google Scholar
  8. P. Ball. Physics of life: The dawn of quantum biology. Nature 474, 272–274 (2011)Google Scholar
  9. G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. PNAS. 2010:107 (29), 12766–12770Google Scholar
  10. Alisher M. Kariev, Vasiliy S. Znamenskiy, and Michael E. Green. Quantum Mechanical calculations of charge effects on gating the KcsA channel. Biochim Biophys Acta. 2007 May; 1768(5): 1218–1229.Google Scholar
  11. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science. 1998;280:69–77.Google Scholar
  12. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998;280:106–109.Google Scholar
  13. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. The open pore conformation of potassium channels. Nature. 2001;417:523–526.Google Scholar
  14. Alisher M. Kariev, Philipa Njau, and Michael E. Green. The Open Gate of the KV1.2 Channel: Quantum Calculations Show the Key Role of Hydration. Biophys J. 2014 February 4; 106(3): 548–555.Google Scholar
  15. Varma S., Rogers D.M., Rempe S.B. Perspectives on: ion selectivity: design principles for K + selectivity in membrane transport. J. Gen. Physiol. 2011;137:479–488.Google Scholar
  16. Dudev T., Lim C. Determinants of K + vs Na + selectivity in potassium channels. J. Am. Chem. Soc. 2009;131:8092–8101. [PubMed]Google Scholar
  17. Dudev T., Lim C. Factors governing the Na(+) vs K(+) selectivity in sodium ion channels. J. Am. Chem. Soc. 2010;132:2321–2332. [PubMed]Google Scholar
  18. Dudev T., Lim C. Why voltage-gated Ca2 + and bacterial Na + channels with the same EEEE motif in their selectivity filters confer opposite metal selectivity. Phys. Chem. Chem. Phys. 2012;14:12451–12456. [PubMed]Google Scholar
  19. Varma S., Rempe S.B. Multibody effects in ion binding and selectivity. Biophys. J. 2010;99:3394–3401.Google Scholar
  20. Bucher D., Rothlisberger U., Carloni P. QM/MM Car-Parrinello molecular dynamics study of selectivity in a potassium channel. ACS. 2004 Abstract PHYS-309.Google Scholar
  21. Bucher D., Rothlisberger U. Molecular simulations of ion channels: a quantum chemist’s perspective. J. Gen. Physiol. 2010;135:549–554. [PubMed]Google Scholar
  22. Maupin C.M., Wong K.F., Voth G.A. A multistate empirical valence bond description of protonatable amino acids. J. Phys. Chem. A. 2006;110:631–639.Google Scholar
  23. Michael A. Crawford, C. Leigh Broadhurst, Martin Guest, Atulya Nagar, Yiqun Wang, Kebreab Ghebremeskel, Walter F. Schmidt. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), Volume 88, Issue 1, January 2013, Pages 5–13Google Scholar
  24. R.H. Steele, A. Szent-Gyorgyi. On excitation of biological substances. Proc. Natl. Acad. Sci., 43 (1957), pp. 478–491Google Scholar
  25. J. Avery, Z. Bay, A. Szent-Gyorgi. On energy transfer in biological systems. Proc. Natl. Acad. Sci., 47 (1961), pp. 1742–1744Google Scholar
  26. D. Bendall, Interprotein Electron Transfer, in: D.S. Bendall, (Ed.), Protein Electron Transfer, Bios Scientific Publishers, Oxford, UK, 1996, pp. 43–68Google Scholar
  27. J.J. Hopfield. Electron transfer between biological molecules by thermally activated tunneling. Proc. Natl. Acad. Sci. USA, 71 (1974), pp. 3640–3644Google Scholar
  28. L. Hackermüller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, M. Arndt, M. Wave. Nature of biomolecules and fluorofullerenes. Phys. Rev. Lett., 91 (2003), p. 090408Google Scholar
  29. S. Hameroff, R. Penrose. Quantum computation in brain microtubules the Penrose-Hameroff Orch OR model of consciousness. Philos. Trans. R. Soc. London A, 356 (1998), pp. 1869–1896Google Scholar
  30. S. Hameroff. The conscious pilot-dendritic synchrony moves through the brain to mediate consciousness. J. Biol. Phys., 36 (1) (2010), pp. 71–93Google Scholar
  31. A.E. Allen, M.A. Cameron, T.M. Brown, A.A. Vugler, R.J. Lucas. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS One, 5 (11) (2010), p. e15063Google Scholar
  32. K. Gawrisch, N.V. Eldho, L.L. Holte. The structure of DHA in phospholipid membranes. Lipids, 38 (4) (2003), pp. 445–452Google Scholar
  33. Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res. 1999 Sep;40(3):211–25.Google Scholar
  34. Gregory S. Engel, Tessa R. Calhoun, Elizabeth L. Read, Tae-Kyu Ahn, Tomáš Mančal, Yuan-Chung Cheng, Robert E. Blankenship, Graham R. Fleming. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).Google Scholar
  35. Gregory D. Scholes. Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First? J. Phys. Chem. Lett., 2010, 1 (1), pp 2–8Google Scholar
  36. Collini, E.; Curutchet, C.; Mirkovic, T.; Scholes, G. D. Electronic Energy Transfer in Photosynthetic Antenna Systems. In Energy Transfer Dynamics in Biomaterial Systems; Burghardt, I., May, V., Micha, D. A., Bittner, E. R., Eds.; Springer Verlag: Heidelberg/Berlin, Germany, 2009; Vol. 93.Google Scholar
  37. Hofmann, E.; Wrench, P. M.; Sharpies, F. P.; Hiller, R. G.; Welte, W.; Diederichs, K. Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium Carterae. Science 1996, 272, 1788–1791.Google Scholar
  38. Wilk, K. E.; Harrop, S. J.; Jankova, L.; Edler, D.; Keenan, G.; Sharpes, F.; Hiller, R. G.; Curmi, P. M. G. Evolution of a Light-Harvesting Protein by Addition of New Subunits and Rearrangement of Conserved Elements: Crystal Structure of a Cryptophyte Phycoerythrin at 1.63-Å Resolution. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8901–8906.Google Scholar
  39. Liu, Z. F.; Yan, H. C.;Wang, K. B.; Kuang, T. Y.; Zhang, J. P.; Gui, L. L.; An, X. M.; Chang, W. R. Crystal Structure of Spinach Major Light-Harvesting Complex at 2.72 Å Resolution. Nature 2004, 428, 287–292.Google Scholar
  40. Ganapathy, S.; Oostergetel, G. T.; Wawrzyniak, P. K.; Reus, M.; Chew,A.G.M.;Buda, F.; Boekema, E. J.;Bryant, D. A.;Holzwarth, A. R.; de Groot, H. J. M. Alternating Syn-Anti Bacteriochlorophylls Form Concentric HelicalNanotubes in Chlorosomes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8525–8530.Google Scholar
  41. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz,M. Z.; Cogdell,R. J.; Isaacs, N. W. Crystal Structure of an Integral Membrane Light-Harvesting Complex from Photosynthetic Bacteria. Nature 1995, 374, 517–521.Google Scholar
  42. Barros, T.; K€uhlbrandt, W. Crystallisation, Structure and Function of Plant Light-Harvesting Complex II. Biochim. Biophys. Acta 2009, 1787, 753–772.Google Scholar
  43. van der Weij-De Wit, C. D.; Doust, A. B.; van Stokkum, I. H. M.; Dekker, J. P.; Wilk, K. E.; Curmi, P. M. G.; Scholes, G. D.; van Grondelle, R. How. Energy Funnels from the Phycoerythrin Antenna Complex to Photosystem I and Photosystem II in Cryptophyte Rhodomonas CS24 Cells. J. Phys. Chem. B 2006, 110, 25066–25073.Google Scholar
  44. Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer, P.; Scholes, G. D. Coherently Wired Light-Harvesting in Photosynthetic Marine Algae at Ambient Temperature. Nature 2010, 463, 644–647Google Scholar
  45. Richard Hildner, Daan Brinks, Niek F. van Hulst. Femtosecond coherence and quantum control of single molecules at room temperature. Nature Physics 7, 172–177 (2011)Google Scholar
  46. Mohan Sarovar, Akihito Ishizaki, Graham R. Fleming, K. Birgitta Whaley. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics 6, 462–467 (2010)Google Scholar
  47. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).Google Scholar
  48. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–648 (2008).Google Scholar
  49. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).Google Scholar
  50. Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).Google Scholar
  51. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).Google Scholar
  52. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).Google Scholar
  53. Cole, J. H. & Hollenberg, L. C. L. Scanning quantum decoherence microscopy. Nanotechology 20, 495401 (2009).Google Scholar
  54. Hall, L. T., Cole, J. H., Hill, C. D. & Hollenberg, L. C. L. Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 220802 (2009).Google Scholar
  55. L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R. E. Scholten, L. C. L. Hollenberg. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnology 6, 358–363 (2011)Google Scholar
  56. C. Bradac, T. Gaebel, N. Naidoo1, M. J. Sellars, J. Twamley, L. J. Brown, A. S. Barnard, T. Plakhotnik, A. V. Zvyagin & J. R. Rabeau. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).Google Scholar
  57. Dudev T., Lim C. Competition among Ca2 +, Mg2 +, and Na + for model ion channel selectivity filters: determinants of ion selectivity. J. Phys. Chem. B. 2012a;116:10703–10714.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Ashrafuzzaman
    • 1
  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations