Advertisement

Cell Transport at Nanoscale Dimensions

  • Mohammad Ashrafuzzaman
Chapter

Abstract

A cell has various components. The classified components are composed of various sub-components. These components and sub-components are either static on average but fluctuating around the equilibrium states, or under continuous movement, so are in dynamic state.

References

  1. Lewis, B.A; Engelman, D.M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol., 1983, 166, 211–217.Google Scholar
  2. Benz, R.; Fröhlich, Läuger, P.; Montal, M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta, 1975, 394, 323–334.Google Scholar
  3. Simon S A, McIntosh T J and Latorre R 1982 Science 216 65–7.Google Scholar
  4. Harper, P.E.; Mannock, D.A.; Lewis, R.N.A.H.; McElhaney, R.N.; Gruner, S.M. X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases. Biophys. J., 2001, 81, 2693–2706.Google Scholar
  5. M. O. Eze. Phase Transitions in Phospholipid Bilayers: Lateral Phase Separations Play Vital Roles in Biomembranes. BIOCHEMICAL EDUCATION 19(4) 1991.Google Scholar
  6. Einstein, A. (1905). “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”. Annalen der Physik (in German) 322 (8): 549–560. Bibcode:1905AnP…322..549E.  https://doi.org/10.1002/andp.19053220806.
  7. von Smoluchowski, M. (1906). “Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen”. Annalen der Physik (in German) 326 (14): 756–780. Bibcode:1906AnP…326..756 V.  https://doi.org/10.1002/andp.19063261405.
  8. S. Achuthan, B.J. Chung, P. Ghosh, V. Rangachari, and A. Vaidya. A modified Stokes-Einstein equation for Aβ aggregation. BMC Bioinformatics 2011, 12(Suppl 10):S13.Google Scholar
  9. Ashrafuzzaman, M., 2015a. Diffusion across cell phase states. Biomedical Sci. Today. 1:e4.Google Scholar
  10. Ashrafuzzaman, M., 2015b. Phenomenology and energetics of diffusion across cell phase states. Saudi J. of Biol. Sci., 22: 666–673.Google Scholar
  11. Quemada D: Rheology of concentrated disperse systems. I. Minimum energy dissipation principle and viscosity-concentration relationship. Rheologica Acta 1977, 16(1):82–94.Google Scholar
  12. Quemada D: Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. European Physical Journal of Applied Physics 1998, 1(1):119–127.Google Scholar
  13. Lee JD, So JH, Yang SM: Rheological behavior and stability of concentrated silica suspensions. Journal of Rheology 1999, 43(5):1117–1140.Google Scholar
  14. Wolthers W, Van den Ende D, Duits MHG, Mellema J: The viscosity and sedimentation of aggregating colloidal dispersions in a Couette flow. Journal of Rheology 1996, 40(1):55–67.Google Scholar
  15. C-Y. Tseng, Md. Ashrafuzzaman, J. Mane, J. Kapty, J. Mercer, J. Tuszynski, Entropic fragment based approach to aptamer design. Chem Biol Drug Des (2011) 78, 1–13.Google Scholar
  16. Ashrafuzzaman M., Tseng C.Y., Kapty J., Mercer J.R., Tuszynski J.A. A computationally designed DNA aptamer template with specific binding to phosphatidylserine. Nucleic Acid Ther. 2013 Dec; 23(6):418–26.Google Scholar
  17. Ashrafuzzaman M., Beck H. 2004a. Vortex dynamics in two-dimensional Josephson junction arrays, (University of Neuchatel, http://doc.rero.ch/record/2894?ln=fr), ch 5, p 85.
  18. M Ashrafuzzaman, H Beck. 2004b. Vortex dynamics in dilute two-dimensional Josephson junction arrays. J. Magnetism Magnetic Materials 272, 284–285.Google Scholar
  19. Ashrafuzzaman, M., Tseng, C.-Y., Duszyk, M., Tuszynski, J. Chemotherapy Drugs Form Ion Pores in Membranes Due to Physical Interactions with Lipids. Chem. Biol. Drug Des., Volume 80, Issue 6, December 2012, Pages 992–1002.Google Scholar
  20. Ashrafuzzaman, M., Tseng C.Y., Tuszynski J.A. Regulation of channel function due to physical energetic coupling with a lipid bilayer. Biochem. Biophys. Res. Commun. 2014 Mar 7;445(2):463–8.Google Scholar
  21. CASE, D.A., DARDEN, T.A., CHEATHAM, T.E. III, SIMMERLING, C.L., WANG, J., DUKE, R.E., LUO, R., CROWLEY, M., WALKER, R.C., ZHANG, W., et al. (2008). AMBER 10. (University of California, San Francisco).Google Scholar
  22. CASE, D.A., DARDEN, T.A., CHEATHAM, T.E. III, SIMMERLING, C.L., WANG, J., DUKE, R.E., LUO, R., CROWLEY, M., WALKER, R.C., ZHANG, W., et al. (2010). AMBER 11. (University of California, San Francisco).Google Scholar
  23. P. P. Dhar and Md. Ashrafuzzaman. CELL MEMBRANE REGULATES THE MYCORRHIZAL FUNGAL TRANSPORT OF NUTRIENTS. 2014 (to be submitted).Google Scholar
  24. Koske, R.E. & Gemma, J. N. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92: 486–505.Google Scholar
  25. Cavagnaro, T.R., Gao, L.-L., Smith, A.F. and Smith, S.E. (2001). Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol. 151: 469–475.Google Scholar
  26. Dickson, S. (2004) The Arum–Paris continuum of mycorrhizalsymbioses. New Phytol. 163: 187–200.Google Scholar
  27. Pumplin, N., and Harrison, M.J. (2009). Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol. 151: 809–819.Google Scholar
  28. Ferrol, N.; J.M. Barea & C. Azcon-Aguilar. 2000. Molecular approaches to study plasma membrane HC-ATPases inarbuscular mycorrhizas, Plant and Soil 226: 219–225.Google Scholar
  29. Asuncion Morte and Mario Honrubia, 2004. Ultrastructure of the mycorrhiza formed by Tetraclinisarticulata (Vahl) Masters (Cupressaceae)Anales de Biologia 26: 179–190.Google Scholar
  30. Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J. B. & Walker, C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531.Google Scholar
  31. M. Ashrafuzzaman. Theoretical and computational understanding of the cell membrane regulation of the mycorrhizal fungal transport of nutrients. 2016 (to be submitted).Google Scholar
  32. Ashrafuzzaman, M., Tuszynski, J., Membrane Biophysics, Springer (Heidelberg), 2012a, ISSN 1618-7210, ISBN 978-3-642-16104-9 ISBN 978-3-642-16105-6 (eBook),  https://doi.org/10.1007/978-3-642-16105-6.
  33. Ashrafuzzaman, M., and J. A. Tuszynski. 2012b. Regulation of channel function due to coupling with a lipid bilayer, J. Comput. Theor. Nanosci. 9: 564–570.Google Scholar
  34. Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A., and Martinac, B. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–948.Google Scholar
  35. Md. Ashrafuzzaman, O.S. Andersen, R.N. McElhaney. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochimica et Biophysica Acta 1778 (2008) 2814–2822.Google Scholar
  36. R. Latorre, R. Alvarez, Voltage-dependent channels in planar lipid bilayer membranes, Physiol. Rev. 61 (1981) 77–150.Google Scholar
  37. Lundbæk J A, Birn P, Tape S E, Toombes G E, Sogaard R, Koeppe R E II, Gruner S M, Hansen A J and Andersen O S. 2005. Mol. Pharmacol. 68 680–9.Google Scholar
  38. Md Ashrafuzzaman, M A Lampson, D V. Greathouse, R E. Koeppe II, and O S Andersen. Manipulating lipid bilayer material properties using biologically active amphipathic molecules. J. Phys.: Condens. Matter 18 (2006) S1235–S1255.Google Scholar
  39. Gruner S M 1985 Proc. Natl Acad. Sci. USA 82 3665–9.Google Scholar
  40. Per Greisen, Jr., Kevin Lum, Md. Ashrafuzzaman, Denise V. Greathouse, Olaf S. Andersen, and Jens A. Lundbæk. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling. PNAS, August 2, 2011, vol. 108, 12717–12722.Google Scholar
  41. Alexander, T., Toth, R., Meier, R. and Weber, H.C. (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. C an. J. Bot. 67: 2505–2513.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations