Advertisement

Nanoscale Processes Giving Rise to Ion Pores

  • Mohammad Ashrafuzzaman
Chapter

Abstract

Agents such as drugs, peptides, biomolecules that are classified as cell active agents (CAAs) get distributed on the cell surface while they are administered to reach out to cellular targets. Study on cell surface morphology may help us address the distribution of CAAs. Cell surface separates hydrophobic cell membrane core from the cell surrounding water environment. The cell membrane’s outer surface is hydrophilic. In an attempt made by any type of agents to enter into the cell, at the first point of entry, the agents have to get transported naturally or via carriers across the hydrophilic–hydrophobic boundary.

References

  1. Md. Ashrafuzzaman, Z. Khan, M. Alanazi, M.S. Alam. 2016. Cell surface binding and lipid interactions behind chemotherapy drug induced ion pore formation in membranes. Submitted.Google Scholar
  2. Ashrafuzzaman, M., M. Duszyk, and J. Tuszynski. 2011. Chemotherapy drug molecules thiocochicoside and taxolpermeabilize lipid bilayer membranes by forming ion channels. J. Phys.: Conf. Series. 329:1–16.Google Scholar
  3. Ashrafuzzaman, M., C.-Y. Tseng, M. Duszyk, J. Tuszynski. 2012. Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids. Chem. Biol. Drug Des. 80: 992–1002.Google Scholar
  4. Andersen, O. S., 1983. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys. J. 41: 147–65.Google Scholar
  5. Huang, H. W., 1986. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50:1061–1071.Google Scholar
  6. Latorre, M., and O. Alvarez. 1981. Voltage-dependent channels in planar lipid bilayer membranes. Physiol. Rev. 6:77–150.Google Scholar
  7. Ludtke, S. J., K. He, W. T. Heller, T. A. Harroun, L. Yang, and H. W. Huang. 1996. Membrane pores induced by magainin. Biochemistry. 35: 13723–28.Google Scholar
  8. Matsuzaki, K., O. Murase, H. Tokuda, N. Fujii, and K. Miyajima. 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 35: 11361–68.Google Scholar
  9. Binnig, G., C. F. Quate, and C Gerber. 1986. Atomic force microscope. Physical Review Letters 56: 930–933.Google Scholar
  10. Schneider, S. W., K. C. Sritharan, J. P. Geibel, H. Oberleithner, and B. P. Jena. 1997. Surface dynamics in living acinar cells imaged by atomic force microscopy: Identification of plasma membrane structures involved in exocytosis. Proc. Natl. Acad. Sci. USA. 94: 316–321.Google Scholar
  11. Bhushan, B (Ed). 2004. Springer Handbook of Nanotechnology. ISBN 978-3-642-02525-9.Google Scholar
  12. Kuznetsova, T. G., M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov. 2007. Atomic force microscopy probing of cell elasticity. Micron. 38: 824–833.Google Scholar
  13. Franz, C. M., and P. H. Puech. 2008. Atomic force microscopy: a versatile tool for studying cell morphology, adhesion and mechanics. Cellular and Molecular Bioengineering.1:289–300.Google Scholar
  14. Caille, N., O. Thoumine, Y. Tardy, and J. J. Meister. 2002. Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics. 35:177–187.Google Scholar
  15. Laurent, V. M., S. Kasas, A. Yersin, T. E. Schaffer, S. Catsicas, G. Dietler, A. B. Verkhovsky, and J. J. Meister. 2005. Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy. Biophysical Journal. 89: 667–67.Google Scholar
  16. Preiner, J., A. Horner, A. Karner, N. Ollinger, C. Siligan, P. Pohl, and P. Hinterdorfer. 2015. High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. Nano Lett. 15, 759–763.Google Scholar
  17. Langer, M. G., A. Koitschev, H. Haas, U. Rexhausen, J.K.H. Hörber, and J. P. Ruppersberg. 2000. Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy. Ultramicroscopy. 82: 269–278.Google Scholar
  18. Madl, J., S. Rhode, H. Stangl, H. Stockinger, P. Hinterdorfer, G. J. Schütz, and G. Kada. 2006. A combined optical and atomic force microscope for live cell investigations. Ultramicroscopy. 106: 645–651.Google Scholar
  19. Heinisch, J. J., P. N. Lipke, A. Beaussart, S. E. K. Chatel, V. Dupres, D. Alsteens, and Y. F. Dufrȇne. 2012. Atomic force microscopy–looking at mechanosensors on the cell surface. Journal of Cell Science. 125: 4189–4195.Google Scholar
  20. Ashrafuzzaman, M., O. S. Andersen, and R. N. McElhaney. 2008. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim. Biophys. Acta.1778: 2814–22.Google Scholar
  21. Ashrafuzzaman, M., and J. A. Tuszynski. 2012a. Regulation of channel function due to coupling with a lipid bilayer, J. Comput. Theor. Nanosci. 9: 564–570.Google Scholar
  22. Ashrafuzzaman, M., and J. Tuszynski. 2012b. Membrane Biophysics, Springer, Heidelberg, Germany.Google Scholar
  23. Schiff, P. B., J. Fant, and S. B. Horwitz. 1979. Promotion of Microtubule Assembly in vitro by Taxol. Nature. 277: 665–666.Google Scholar
  24. Callen, J. P., 1985. Colchicine is effective in controlling chronic cutaneous vasculitis in lupus erythematosus. J. Am. Acad. Dermatol.13: 193–200.Google Scholar
  25. Seidemann, P., B. Fjellner, and A.Johannesson. 1987. Psoriatic arthritis treated with oral colchicine. J. Rheumatol. 14: 777–79.Google Scholar
  26. Fisherman, J., M. McCabe, and M. Hillig. 1992. Phase I study of taxol and doxorubucin (Dox) with G-CSF in previously untreated metastatic breast cancer. Proc. Am. SOC. Clin. Oncol. 1175A.Google Scholar
  27. Holmes, F. A., A.P. Kudelka, J. J. Kavanagh, M. H. Huber, J. A. Ajani, and V. Valero,in: G.I. Georg, T. T. Chen, I. Ojima, and D. M. Vyas (Eds.). 1994. Taxane Anticancer Agents: Basic Science and Current Status, Vol. ACS Symposium Series 583, American Chemical Society, Washington, DC:31–57.Google Scholar
  28. Ashrafuzzaman, M., 2015a. Diffusion across cell phase states. Biomedical Sci. Today. 1:e4.Google Scholar
  29. Ashrafuzzaman, M., 2015b. Phenomenology and energetics of diffusion across cell phase states. Saudi J. of Biol. Sci., 22: 666–673.Google Scholar
  30. Rosenman, S. J., A. A. Ganji, W. M. Gallatin. 1991. Contact dependent redistribution of cell surface adhesion and activation molecules reorganization. FASEB J. 5: 1603.Google Scholar
  31. Mekory, Y. A., D. Baram, A. Goldberg, and A. Klajman. 1989. Inhibition of delayed hypersensitivity in mice by colchicines: Mechanism of inhibition of contact sensibility in vivo. Cell. Immunol. 120: 330–40.Google Scholar
  32. Borisy, G. O., and E. W. Taylor. 1967. The mechanism of action of colchicine: Colchicine binding to seaurchin eggs and the mitotic apparatus. J. Cell. Biol. 34: 533–48.Google Scholar
  33. Agutter, P. S., and K. E. Suckling. 1982. Effect of colchicine on mammalian liver nuclear envelope and on nucleo-cytoplasmic RNA transport. Biochim. Biophys. Acta. 698:223–229.Google Scholar
  34. Balasubramanian, S. V., and R. M. Straubinger. 1994. Taxol-lipid interactions: taxol-dependent effects on the physical properties of model membranes. Biochemistry. 33: 8941–8947.Google Scholar
  35. Matsumoto, G., and H. Sakai. 1979. Microtubules inside the plasma membrane of squid giant axons and their possible physiological function. J. Membrane Biol.50: 1–14.Google Scholar
  36. Sonee, M., E. Barron, F. A. Yarber, and S. F. Hamm-Alvarez. 1998. Taxol inhibits endosomal-lysosomal membrane trafficking at two distinct steps in CV-1 cells. Am. J. Physiol. Cell Physiol.44:1630–39.Google Scholar
  37. Shiba, M., E. Watanabe, S. Sasakawa, Y. Ikeda. 1988. Effects of taxol and colchicines on platelet membrane properties. Thromb Res.52: 313–23.Google Scholar
  38. Mons, S., F. Veretout, M. Carlier, I. Erk, J. Lepault, E. Trudel, C. Salesse, P. Ducray, C. Mioskowski, and L. Lebeau. 2000. The interaction between lipid derivatives of colchicines and tubulin: Consequences of the interaction of the alkaloid with lipid membranes. Biochim. Biophys. Acta.1468:381–95.Google Scholar
  39. D. S. Grierson, E. E. Flater, and R. W. Carpick. 2005. Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhesion Sci. Technol. 19: 291–311.Google Scholar
  40. S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. C. Bunch. 2011. Ultrastrong adhesion of graphene membranes. Nature Nanotechnology. 6: 543–546.Google Scholar
  41. Ashrafuzzaman, M. C.-Y. Tseng, and J.A. Tuszynski. 2014. Regulation of channel function due to physical energetic coupling with a lipid bilayer. Biochemical and Biophysical Research Communications. 445:463–468.Google Scholar
  42. Case DA, Darden TA, Cheatham, TE III, Simmerling CL, Wang J et al. (2010) AMBER 11. University of California, San Francisco, USA.Google Scholar
  43. Wang J, Wolf RM; Caldwell JW, Kollman PA, Case DA. Development and testing of a general AMBER force field. J. of Comp. Chem., 2004; 25: 1157–1174.Google Scholar
  44. Wang J, Wang W, Kollman PA, Case DA (2006). Automatic atom type and bond type perception in molecular mechanical calculations. J. of Mol. Graphics and Modelling; 25, 247260.Google Scholar
  45. Huzil JT, Mane J, Tuszynski JA. Computer assisted design of second generation colchicine derivatives, Interdisciplinary Sciences- Computational Life Sciences., 2010;2:169–174.Google Scholar
  46. Freedman H, Huzil JT, Luchko T, Luduena RF, Tuszynski JA. Identification and Characterization of an Intermediate Taxol Binding Site Within Microtubule Nanopores and a Mechanism for Tubulin Isotype Binding Selectivity, J. of Chem. Info. and Modeling., 2009:49;424–436.Google Scholar
  47. Woolf TB, Roux B. (1994) Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc. Natl. Acad. Sci., USA.;91: 11631–35.Google Scholar
  48. Ashrafuzzaman M, Tuszynski J (2011) Ion pore formation in lipid membranes due to complex interactions between lipids and channel formping peptides or biomolecules. In HB of Nanosci., Eng. & Tech.; Goddard, Brenner, Lyshevki and Iafrate, Eds.; Taylor and Francis (CRC press), New York, USA.Google Scholar
  49. Ashrafuzzaman M (2011) Antimicrobial peptides modulate bilayer barrier properties using a variety of mechanisms of actions, Science against microbial pathogens: communicating current research and technological advances (Microbiology Book Series, No.3, Ed: Antonio Méndez-Vilas), Formatex Res. Cen., Spain; Vol 2, 938–950.Google Scholar
  50. Ashrafuzzaman M, Tuszynski J. 2012c. Ion pore formation in lipid bilayers and related energetic considerations, Curr. Med. Chem.;19:1619–34.Google Scholar
  51. Ashrafuzzaman M., Beck H. (2004) in Vortex dynamics in two-dimensional Josephson junction arrays, (University of Neuchatel, http://doc.rero.ch/record/2894?ln=fr), ch 5, p 85.
  52. He K, Ludtke SJ, Huang HW, Worcester DL. (1995) Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry;34: 15614–18.Google Scholar
  53. D A Mannock, R N Lewis, R N McElhaney, M Akiyama, H Yamada, D C Turner, and S M Gruner. Effect of the chirality of the glycerol backbone on the bilayer and nonbilayer phase transitions in the diastereomers of di-dodecyl-beta-D-glucopyranosyl glycerol. Biophys J. 1992 Nov; 63(5): 1355–1368.Google Scholar
  54. D. A. Mannock, R. N. McElhaney, P. E. Harper, and S. M. Gruner. Differential scanning calorimetry and X-ray diffraction studies of the thermotropic phase behavior of the diastereomeric di-tetradecyl-beta-D-galactosyl glycerols and their mixture. Biophys J. 1994 Mar; 66(3 Pt 1): 734–740.Google Scholar
  55. Dzmitry Afanasenkau and Andreas Offenhäusser. Positively Charged Supported Lipid Bilayers as a Biomimetic Platform for Neuronal Cell Culture. Langmuir, 2012, 28 (37), 13387–13394.Google Scholar
  56. Akira Abe and James A. Shayman. The role of negatively charged lipids in lysosomal phospholipase A2 function. J Lipid Res. 2009 Oct; 50(10): 2027–2035.Google Scholar
  57. Md Ashrafuzzaman, M A Lampson, D V Greathouse, R E Koeppe II, and O S Andersen. Manipulating lipid bilayer material properties using biologically active amphipathic molecules. Journal of Physics: Condensed Matter 18: S1235–S1255 (2006).Google Scholar
  58. B. A. Wallace, W. R. Veatch and E. R. Blout, Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry 20 (1981) 5754–5760.Google Scholar
  59. J. Katsaras, R. S. Prosser, R. H. Stinson and J. H. Davis, Constant helical pitch of the gramicidin channel in phospholipid bilayers, Biophys. J. 61 (1992) 827–830.Google Scholar
  60. J. T. Durkin, L. L. Providence, R. E. Koeppe II and O. S. Andersen, Energetics of heterodimer formation among gramicidin analogues with an NH2-terminal addition or deletion consequences of missing a residue at the join in the channel. J. Mol. Biol. 231, (1993) 1102–1121.Google Scholar
  61. O. S. Andersen, C. Nielsen, A. M. Maer, J. A. Lundbæk, M. Goulian and R. E. Koeppe II, Gramicidin channels: molecular force transducers in lipid bilayers, Biol. Skr. Dan. Vid. Selsk. 49 (1998) 75–82.Google Scholar
  62. G. V. Miloshevsky and P. C. Jordan, Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation, Biophys. J. 86 (2004) 92–104.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations