Cell Surface Dynamics

Chapter

Abstract

Cell surface materials are quite dynamic. The timescales of dynamics often fall at the order of millisecond to microsecond or even lower ranges. Both slow and fast dynamics of cell surface are known to follow general physics rules. Cell contains biological components having mostly chemical and physical properties. Cell surface structure can better be explained using its physical properties, specifically mechanical and electrical properties. These properties generally serve the causes of specific surface dynamics. This chapter will focus at an in-depth analysis of the cell surface dynamics.

References

  1. R.B. Taylor, W.P.H. Duffus, M.C. Raff, S. de Petris. 1971. Redistribution and Pinocytosis of Lymphocyte Surface Immunoglobulin Molecules Induced by Anti-Immunoglobulin Antibody. Nature new biology 233, 225–229.Google Scholar
  2. S.J. Singer, G.L. Nicolson. The Fluid Mosaic Model of the structure of cell membranes. Science, 175 (1972), pp. 720–731.Google Scholar
  3. Md Ashrafuzzaman and J. Tuszynski. 2012a. Membrane Biophysics, Springer-Verlag, Berlin, Heidelberg. ISBN: 978–3-642-16104-9 (Print), 978-3-642-16105-6 (Online).Google Scholar
  4. G.L. Nicolson. 2014. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1838, 1451–1466.Google Scholar
  5. G.L. Nicolson. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components. Biochim. Biophys. Acta, 457 (1976), pp. 57–108.Google Scholar
  6. G.L. Nicolson, T. Ji, G. Poste. The dynamics of cell membrane organization. G. Poste, G.L. Nicolson (Eds.), Dynamic Aspects of Cell Surface Organization, Elsevier, New York (1977), pp. 1–73.Google Scholar
  7. K. Jacobson, E.D. Sheets, R. Simson. Revisiting the fluid mosaic model of membranes. Science, 268 (1995), pp. 1441–1442.Google Scholar
  8. P.V. Escribá, J.M. Gonzáles-Ros, F.M. Goñi, P.K.J. Kinnunen, L. Vigh, L. Sánchez-Magraner, A.M. Fernández, X. Busquets, I. Horváth, G. Barceló-Coblijn. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med., 12 (2008), pp. 829–875.Google Scholar
  9. J.D. Robertson. The ultrastructure of cell membranes and their derivatives. Biochem. Soc. Symp., 16 (1959), pp. 3–43.Google Scholar
  10. J.D. Robertson. The molecular structure and contact relationships of cell membranes. Prog. Biophys. Biophys. Chem., 10 (1960), pp. 343–418.Google Scholar
  11. J.D. Robertson. Membrane structure. J. Cell Biol., 91 (1981), pp. 191s–204s.Google Scholar
  12. J.F. Danielli, H. Davson. A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol., 5 (1935), pp. 495–508.Google Scholar
  13. E. Gorter, F. Grendel. On bimolecular layers of lipoids on the chromocytes of the blood. J. Exp. Med., 41 (1925), pp. 439–443.Google Scholar
  14. P. Pinto da Silva, D. Branton. Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. J. Cell Biol., 45 (1970), pp. 598–605.Google Scholar
  15. W. Stoeckenius, D.M. Engelman. Current models for the structure of biological membranes. J. Cell Biol., 42 (1969), pp. 613–646.Google Scholar
  16. A.A. Benson. On the orientation of lipids in chloroplast and cell membranes. J. Am. Oil Chem. Soc., 43 (1966), pp. 265–270.Google Scholar
  17. D.E. Green, D.W. Allmann, E. Bachmann, H. Baum, K. Kopaczyk, E.F. Korman, S. Lipton, D.H. MacLennan, D.G. McConnell, J.F. Perdue, J.S. Rieske, A. Tzagoloff. Formation of membranes by repeating units. Arch. Biochem. Biophys., 119 (1987), pp. 312–335.Google Scholar
  18. W. Kauzmann. Some factors in the interpretation of protein denaturing. Adv. Protein Chem., 14 (1959), pp. 1–63.Google Scholar
  19. S.J. Singer. The structure and function of membranes—a personal memoir. J. Membr. Biol., 129 (1992), pp. 3–12.Google Scholar
  20. S.J. Singer. The molecular organization of membranes. L.I. Rothfield (Ed.), Structure and Function of Biological Membranes, Academic Press, New York (1971), pp. 145–222.Google Scholar
  21. Ashrafuzzaman, Md.; Tuszynski, J. Regulation of Channel Function Due to Coupling with a Lipid Bilayer. Journal of Computational and Theoretical Nanoscience, Volume 9, Number 4, April 2012b, pp. 564–570.Google Scholar
  22. M. Edidin. Lipids on the frontier: a quarter century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol., 4 (2003), pp. 414–418.Google Scholar
  23. A.J. Garcia-Sáez, P. Schwille. Surface analysis of membrane dynamics. Biochim. Biophys. Acta, 1798 (2010), pp. 766–776.Google Scholar
  24. G. Lindblom, G. Orädd. Lipid lateral diffusion and membrane heterogeneity. Biochim. Biophys. Acta, 1788 (2009), pp. 234–244.Google Scholar
  25. G. Verbe, J. Szöllosi, J. Matkó, P. Nagy, T. Farkas, L. Vigh, L. Mátyus, T.A. Waldmann, S. Damjanovich. Dynamic, yet structured: the cell membrane three decades after the Singer–Nicolson model. Proc. Natl. Acad. Sci. U. S. A., 100 (2003), pp. 8053–8058.Google Scholar
  26. L.A. Bagatolli, J.H. Ipsen, A.C. Simonsen, O.G. Mouritsen. An outlook on the organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog. Lipid Res., 49 (2010), pp. 378–389.Google Scholar
  27. O.G. Mouritsen, M. Bloom. Mattress model of lipid–protein interactions in membranes. Biophys. J., 46 (1984), pp. 141–153.Google Scholar
  28. P. Somerharju, J.A. Virtanen, K.H. Cheng, M. Hermansson. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis. Biochim. Biophys. Acta, 1788 (2009), pp. 12–23.Google Scholar
  29. K. Jacobson, A. Ishihara, R. Inman. Lateral diffusion of proteins in membranes. Annu. Rev. Physiol., 49 (1987), pp. 163–175.Google Scholar
  30. A.K. Neumann, M.S. Itano, K. Jacobson. Understanding lipid rafts and other related membrane domains, F1000. Biol. Reprod., 2 (2010a), pp. 31–36.Google Scholar
  31. A. Kusumi, I. Koyama-Honda, K. Suzuki. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic, 5 (2004), pp. 213–230.Google Scholar
  32. G. Lenaz. Lipid fluidity and membrane protein dynamics. Biosci. Rep., 7 (1987), pp. 823–837.Google Scholar
  33. M. Edidin, S.C. Kuo, M.P. Sheetz. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science, 254 (1991), pp. 1379–1382.Google Scholar
  34. A. Kusumi, T.K. Fujiwara, R. Chadda, M. Xie, T.A. Tsunoyama, Z. Kalay, R.S. Kasai, K.G. Suzuki. Dynamic organizing principals of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu. Rev. Cell Dev. Biol., 28 (2012), pp. 215–250.Google Scholar
  35. M.P. Sheetz. Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape Semin. Hematol., 20 (1983), pp. 175–188.Google Scholar
  36. K. Radhkrishnan, A. Halasz, D. Vlachos, J.S. Edwards. Quantitative understanding of cell signaling: the importance of membrane organization. Curr. Opin. Biotechnol., 21 (2010), pp. 677–682.Google Scholar
  37. F. Zhang, G.M. Lee, K. Jacobson. Protein lateral mobility as a reflection of membrane microstructure. Bioessays, 15 (1993), pp. 579–588.Google Scholar
  38. A. Kusumi, K.G. Suzuki, R.S. Kasai, K. Ritchie, T.K. Fujiwara. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci., 36 (2011), pp. 604–615.Google Scholar
  39. P. Liu, X. Wang, M.S. Itano, A.K. Neumann, K. Jacobson, N.L. Thompson. The formation and stability of DC-SIGN microdomains require its extracellular moiety. Traffic, 13 (2012), pp. 715–726.Google Scholar
  40. Grecco HE, Schmick M, Bastiaens PI. 2011. Signaling from the living plasma membrane. Cell 144:897–909.Google Scholar
  41. Cronan JE. 2003. Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224.  https://doi.org/10.1146/annurev.micro.57.030502.090851.
  42. van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124.  https://doi.org/10.1038/nrm2330. CrossRefMedline.
  43. Coskun U, Simons K. 2011. Cell membranes: the lipid perspective. Structure 19:1543–1548.  https://doi.org/10.1016/j.str.2011.10.010.
  44. Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50.  https://doi.org/10.1126/science.1174621. Abstract/FREE Full Text.
  45. Neumann AK, Itano MS, Jacobson K. 2010b. Understanding lipid rafts and other related membrane domains. F1000 Biol Rep 2:31.  https://doi.org/10.3410/b2-31.
  46. Simons K, Sampaio JL. 2011a. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697.  https://doi.org/10.1101/cshperspect.a004697.
  47. Kraft ML. 2013. Plasma membrane organization and function: moving past lipid rafts. Mol Biol Cell 24:2765–2768.Google Scholar
  48. Schuck S, Simons K. 2004a. Polarized sorting in epithelial cells: Raft clustering and the biogenesis of the apical membrane. J Cell Sci 117: 5955–5964.Google Scholar
  49. Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K. 2010. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3:446–454.  https://doi.org/10.1002/jbio.200900089. CrossRefMedline.
  50. Spira F, Mueller NS, Beck G, von Olshausen P, Beig J, Wedlich-Soldner R. 2012. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14:640–648.  https://doi.org/10.1038/ncb2487.
  51. Simons K, Van Meer G. 1988a. Lipid sorting in epithelial cells. Biochemistry 27: 6197–6202.Google Scholar
  52. Simons K, Ikonen E. 1997a. Functional rafts in cell membranes. Nature 387:569–572.Google Scholar
  53. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, et al. 2009. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185: 601–612.Google Scholar
  54. Bagnat M, Chang A, Simons K. 2001. Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol Biol Cell 12: 4129–4138.Google Scholar
  55. Meder D, Moreno MJ, Verkade P, Vaz WL, Simons K. 2006. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc Natl Acad Sci 103: 329–334.Google Scholar
  56. Danielsen E, Hansen G. 2008. Lipid raft organization and function in the small intestinal brush border. J Physiol Biochem 64: 377–382.Google Scholar
  57. Morrow IC, Parton RG. 2005. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6:725–740.Google Scholar
  58. Babuke T, Tikkanen R. 2007. Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 86:525–532.Google Scholar
  59. Otto GP, Nichols BJ. 2011. The roles of flotillin microdomains—endocytosis and beyond. J Cell Sci 124:3933–3940.Google Scholar
  60. Stuermer CA. 2011. Reggie/flotillin and the targeted delivery of cargo. J Neurochem 116:708–713.Google Scholar
  61. Zhao F, Zhang J, Liu YS, Li L, He YL. 2011. Research advances on flotillins. Virol J 8:479.  https://doi.org/10.1186/1743-422x-8-479.
  62. Michel V, Bakovic M. 2007. Lipid rafts in health and disease. Biol Cell 99:129–140.  https://doi.org/10.1042/bc20060051.
  63. W.T. Schroeder, S. Stewart-Galetka, S. Mandavilli, D.A. Parry, L. Goldsmith, M. Duvic. Cloning and characterization of a novel epidermal cell surface antigen (ESA). J. Biol. Chem., 269 (1994), pp. 19983–19991.Google Scholar
  64. T. Schulte, K.A. Paschke, U. Laessing, F. Lottspeich, C.A. Stuermer. Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development, 124 (1997), pp. 577–587.Google Scholar
  65. M. Bauer, L. Pelkmans. A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett., 580 (2006), pp. 5559–5564.Google Scholar
  66. C.A. Baumann, V. Ribon, M. Kanzaki, D.C. Thurmond, S. Mora, S. Shigematsu, P.E. Bickel, J.E. Pessin, A.R. Saltiel. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature, 407 (2000), pp. 202–207.Google Scholar
  67. Tanja Babuke, Ritva Tikkanen. 2007. Dissecting the molecular function of reggie/flotillin proteins. European Journal of Cell Biology 86, Pages 525–532.Google Scholar
  68. G. van Meer. Cellular lipidomics. EMBO J., 24 (2005), pp. 3159–3165.Google Scholar
  69. W.F. Drew Bennett, D. Peter Tieleman. Computer simulations of lipid membrane domains. Biochimica et Biophysica Acta (BBA)—Biomembranes. Volume 1828, Issue 8, August 2013, Pages 1765–1776.Google Scholar
  70. S.L. Veatch, S.L. Keller. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta Biomembr., 1746 (2005), pp. 172–185.Google Scholar
  71. G.W. Feigenson. Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures Biochim. Biophys. Acta Biomembr., 1788 (2009), pp. 47–52.Google Scholar
  72. T. Baumgart, A.T. Hammond, P. Sengupta, S.T. Hess, D.A. Holowka, B.A. Baird, W.W. Webb. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. U. S. A., 104 (2007), pp. 3165–3170.Google Scholar
  73. S.L. Veatch, P. Cicuta, P. Sengupta, A. Honerkamp-Smith, D. Holowka, B. Baird. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol., 3 (2008), pp. 287–293.Google Scholar
  74. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V.N. Belov, B. Hein, C. von Middendorff, A. Schonle, S.W. Hell. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature, 457 (2009), pp. 1159–1162.Google Scholar
  75. E. Sezgin, I. Levental, M. Grzybek, G.n. Schwarzmann, V. Mueller, A. Honigmann, V.N. Belov, C. Eggeling, ú. Coskun, K. Simons, P. Schwille. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta Biomembr., 1818 (2012), pp. 1777–1784.Google Scholar
  76. H.J. Risselada, S.J. Marrink. The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. U. S. A., 105 (2008), pp. 17367–17372.Google Scholar
  77. S. Baoukina, E. Mendez-Villuendas, W.F.D. Bennett, D.P. Tieleman. Computer simulations of the phase separation in model membranes. Faraday Discuss., 161 (2013), pp. 63–75.Google Scholar
  78. J.D. Perlmutter, J.N. Sachs. Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J. Am. Chem. Soc., 133 (2011), pp. 6563–6577.Google Scholar
  79. J. Domanski, S.J. Marrink, L.V. Schafer. Transmembrane helices can induce domain formation in crowded model membranes. Biochim. Biophys. Acta Biomembr., 1818 (2012), pp. 984–994.Google Scholar
  80. W. Shinoda, R. DeVane, M.L. Klein. Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul., 33 (2007), pp. 27–36.Google Scholar
  81. D.A. Pantano, P.B. Moore, M.L. Klein, D.E. Discher. Raft registration across bilayers in a molecularly detailed model. Soft Matter, 7 (2011), pp. 8182–8191.Google Scholar
  82. S. Baoukina, L. Monticelli, H.J. Risselada, S.J. Marrink, D.P. Tieleman. The molecular mechanism of lipid monolayer collapse. Proc. Natl. Acad. Sci. U. S. A., 105 (2008), pp. 10803–10808.Google Scholar
  83. S. Baoukina, D.P. Tieleman. Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase Biophys. J., 100 (2011), pp. 1678–1687.Google Scholar
  84. S. Baoukina, E. Mendez-Villuendas, D.P. Tieleman. Molecular view of phase coexistence in lipid monolayers. J. Am. Chem. Soc., 134 (2012), pp. 17543–17553.Google Scholar
  85. Charles A. Day, Anne K. Kenworthy. Tracking microdomain dynamics in cell membranes. Biochimica et Biophysica Acta (BBA)—Biomembranes. Volume 1788, Issue 1, January 2009, Pages 245–253.Google Scholar
  86. Kai Simons and Julio L. Sampaio. Membrane Organization and Lipid Rafts. Cold Spring Harb Perspect Biol 2011b; 3:a004697.Google Scholar
  87. L.D. Frye, M. Edidin. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J. Cell. Sci., 7 (1970), pp. 319–335.Google Scholar
  88. Y. Chen, B.C. Lagerholm, B. Yang, K. Jacobson. Methods to measure the lateral diffusion of membrane lipids and proteins. Methods, 39 (2006), pp. 147–153.Google Scholar
  89. A.K. Kenworthy. Fluorescence recovery after photobleaching studies of lipid rafts. T. McIntosh (Ed.), Lipid Rafts, Humana Press, Towata, NJ (2007).Google Scholar
  90. D. Marguet, P.F. Lenne, H. Rigneault, H.T. He. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J., 25 (2006), pp. 3446–3457.Google Scholar
  91. K. Bacia, P. Schwille. Fluorescence correlation spectroscopy. Methods Mol. Biol., 398 (2007), pp. 73–84.Google Scholar
  92. A. Kusumi, H. Ike, C. Nakada, K. Murase, T. Fujiwara. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol., 17 (2005), pp. 3–21.Google Scholar
  93. P.H. Lommerse, H.P. Spaink, T. Schmidt. In vivo plasma membrane organization: results of biophysical approaches. Biochim. Biophys. Acta, 1664 (2004), pp. 119–131.Google Scholar
  94. B.C. Lagerholm, G.E. Weinreb, K. Jacobson, N.L. Thompson. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem., 56 (2005), pp. 309–336.Google Scholar
  95. K. Jacobson, O.G. Mouritsen, R.G. Anderson. Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol., 9 (2007), pp. 7–14.Google Scholar
  96. A.K. Kenworthy. Fleeting glimpses of lipid rafts: how biophysics is being used to track them J. Investig. Med., 53 (2005), pp. 312–317.Google Scholar
  97. M. Edidin. Patches, posts and fences: proteins and plasma membrane domains. Trends. Cell. Biol., 2 (1992), pp. 376–380.Google Scholar
  98. A. Kusumi, Y. Sako. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol., 8 (1996), pp. 566–574.Google Scholar
  99. M.P. Sheetz. Cellular plasma membrane domains. Mol. Membr. Biol., 12 (1995), pp. 89–91.Google Scholar
  100. M.P. Sheetz, M. Schindler, D.E. Koppel. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature, 285 (1980), pp. 510–511.Google Scholar
  101. E.S. Wu, D.W. Tank, W.W. Webb. Unconstrained lateral diffusion of concanavalin A receptors on bulbous lymphocytes. Proc. Natl. Acad. Sci. U. S. A., 79 (1982), pp. 4962–4966.Google Scholar
  102. E. Yechiel, M. Edidin. Micrometer-scale domains in fibroblast plasma membranes. J. Cell Biol., 105 (1987), pp. 755–760.Google Scholar
  103. M. Edidin, I. Stroynowski. Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J. Cell Biol., 112 (1991), pp. 1143–1150.Google Scholar
  104. M. Edidin. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol., 7 (1997), pp. 528–532.Google Scholar
  105. M. Edidin, M.C. Zuniga, M.P. Sheetz. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc. Natl. Acad. Sci. U. S. A., 91 (1994), pp. 3378–3382.Google Scholar
  106. R. Simson, E.D. Sheets, K. Jacobson. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J., 69 (1995), pp. 989–993.Google Scholar
  107. E. Fire, D.E. Zwart, M.G. Roth, Y.I. Henis. Evidence from lateral mobility studies for dynamic interactions of a mutant influenza hemagglutinin with coated pits. J. Cell Biol., 115 (1991), pp. 1585–1594.Google Scholar
  108. Y.M. Umemura, M. Vrljic, S.Y. Nishimura, T.K. Fujiwara, K.G. Suzuki, A. Kusumi. Both MHC class II and its GPI-anchored form undergo hop diffusion as observed by single-molecule tracking. Biophys. J., 95 (2008), pp. 435–450.Google Scholar
  109. Malinska, K., Malinsky, J., Opekarova, M. & Tanner, W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14, 4427–4436 (2003).Google Scholar
  110. Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).Google Scholar
  111. Gaus, K. et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 15554–15559 (2003).Google Scholar
  112. Vereb, G. et al. Dynamic, yet structured: The cell membrane the decades after the Singer-Nicolson model. Proc. Natl Acad. Sci. USA 100, 8053–8058 (2003).Google Scholar
  113. Roper, K., Corbeil, D. & Huttner, W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biol. 2, 582–592 (2000).Google Scholar
  114. Nydegger, S., Khurana, S., Krementsov, D. N., Foti, M. & Thali, M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173, 795–807 (2006).Google Scholar
  115. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).Google Scholar
  116. Heijnen, H. F. G. et al. Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J. Thromb. Haemos. 1, 1161–1173 (2003).Google Scholar
  117. Ashrafuzzaman M, Tseng CY, Kapty J, Mercer JR, Tuszynski JA. A computationally designed DNA aptamer template with specific binding to phosphatidylserine. Nucleic Acid Ther. 2013 Dec;23(6):418–26.  https://doi.org/10.1089/nat.2013.0415. Epub 2013 Nov 26.
  118. Schuck S, Simons K. 2004b. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964.  https://doi.org/10.1242/jcs.01596.
  119. Simons K, van Meer G. 1988. Lipid sorting in epithelial cells. Biochemistry 27:6197–6202.  https://doi.org/10.1021/bi00417a001.
  120. van Meer G, Simons K. 1988. Lipid polarity and sorting in epithelial cells. J Cell Biochem 36:51–58.  https://doi.org/10.1002/jcb.240360106.
  121. Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39.  https://doi.org/10.1038/35036052.
  122. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM, Jr. 2002. Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417.  https://doi.org/10.1016/s0166-2236(02)02215-4.
  123. Barak I, Muchova K. 2013. The role of lipid domains in bacterial cell processes. Int J Mol Sci 14:4050–4065.  https://doi.org/10.3390/ijms14024050.
  124. Barak I, Muchova K, Wilkinson AJ, O’Toole PJ, Pavlendova N. 2008. Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327.  https://doi.org/10.1111/j.1365-2958.2008.06236.x.
  125. Matsumoto K, Kusaka J, Nishibori A, Hara H. 2006. Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117.  https://doi.org/10.1111/j.1365-2958.2006.05317.x.
  126. Muchova K, Jamroskovic J, Barak I. 2010. Lipid domains in Bacillus subtilis anucleate cells. Res Microbiol 161:783–790.  https://doi.org/10.1016/j.resmic.20 https://doi.org/10.07.006.
  127. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K. 2004. Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 186:1475–1483.  https://doi.org/10.1128/jb.186.5.1475-1483.
  128. Mileykovskaya E, Dowhan W. 2000. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175.  https://doi.org/10.1128/jb.182.4.1172-1175.2000.
  129. Mileykovskaya E, Dowhan W. 2009. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091.  https://doi.org/10.1016/j.bbamem.2009.04.003.
  130. Rosch JW, Hsu FF, Caparon MG. 2007. Anionic lipids enriched at the ExPortal of Streptococcus pyogenes. J Bacteriol 189:801–806.  https://doi.org/10.1128/jb.01549-06.
  131. Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB. 2014. Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196:3386–3398.Google Scholar
  132. Sourjik V. 2004. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol 12:569–576.  https://doi.org/10.1016/j.tim.2004.10.003.
  133. Bray D, Levin MD, Morton-Firth CJ. 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88.  https://doi.org/10.1038/30018.
  134. Simons K, Ikonen E. 1997b. Functional rafts in cell membranes. Nature 387:569–572.  https://doi.org/10.1038/42408.
  135. Tavernarakis N, Driscoll M, Kyrpides NC. 1999. The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24:425–427.  https://doi.org/10.1016/s0968-0004(99)01467-x.
  136. Good MC, Zalatan JG, Lim WA. 2011. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686.  https://doi.org/10.1126/science.1198701.
  137. Langhorst MF, Reuter A, Stuermer CA. 2005. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240.Google Scholar
  138. Marc Bramkampa and Daniel Lopez. 2015. Exploring the Existence of Lipid Rafts in Bacteria. Microbiol. Mol. Biol. Rev., vol. 79: 81–100.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations