Skip to main content

MOEA/DEP: An Algebraic Decomposition-Based Evolutionary Algorithm for the Multiobjective Permutation Flowshop Scheduling Problem

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10782))

Abstract

Algebraic evolutionary algorithms are an emerging class of meta-heuristics for combinatorial optimization based on strong mathematical foundations. In this paper we introduce a decomposition-based algebraic evolutionary algorithm, namely MOEA/DEP, in order to deal with multiobjective permutation-based optimization problems. As a case of study, MOEA/DEP has been experimentally validated on a multiobjective permutation flowshop scheduling problem (MoPFSP). In particular, the makespan and total flowtime objectives have been investigated. Experiments have been held on a widely used benchmark suite, and the obtained results have been compared with respect to the state-of-the-art Pareto fronts for MoPFSP. The experimental results have been analyzed by means of two commonly used performance metrics for multiobjective optimization. The analysis clearly shows that MOEA/DEP reaches new state-of-the-art results for the considered benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our previous paper [9] there was a typo. Actually, the time complexity of \( RandSS \) is \(\varTheta (n)\) and not \(\varTheta (n^2)\) as erroneously in [9]. A simple amortized analysis proves the claim.

  2. 2.

    https://github.com/murilozangari.

References

  1. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2017)

    Google Scholar 

  2. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  3. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  4. Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion. IEEE Trans. Evol. Comput. 20(5), 682–694 (2016). https://doi.org/10.1109/TEVC.2015.2507785

    Article  MATH  Google Scholar 

  5. Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for the permutations search space. In: Proceedings of IEEE Congress on Evolutionary Computation CEC 2017, pp. 1587–1594 (2017). https://doi.org/10.1109/CEC.2017.7969492

  6. Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–286 (2016). https://doi.org/10.3233/AIC-150695

    Article  MathSciNet  MATH  Google Scholar 

  7. Santucci, V., Baioletti, M., Milani, A.: A differential evolution algorithm for the permutation flowshop scheduling problem with total flow time criterion. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 161–170. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_16

    Chapter  Google Scholar 

  8. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  9. Baioletti, M., Milani, A., Santucci, V.: An extension of algebraic differential evolution for the linear ordering problem with cumulative costs. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 123–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_12

    Chapter  Google Scholar 

  10. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)

    Article  MathSciNet  Google Scholar 

  11. Varadharajan, T., Rajendran, C.: A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur. J. Oper. Res. 167(3), 772–795 (2005)

    Article  MathSciNet  Google Scholar 

  12. Minella, G., Ruiz, R., Ciavotta, M.: Restarted iterated Pareto Greedy algorithm for multi-objective flowshop scheduling problems. Comput. Oper. Res. 38(11), 1521–1533 (2011)

    Article  MathSciNet  Google Scholar 

  13. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)

    Article  MathSciNet  Google Scholar 

  14. Zangari, M., Mendiburu, A., Santana, R., Pozo, A.: Multiobjective decomposition-based mallows models estimation of distribution algorithm. A case of study for permutation flowshop scheduling problem. Inf. Sci. 397–398(Supplement C), 137–154 (2017)

    Article  Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  16. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  17. Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to theP//\(\varSigma {C_{i}}\) scheduling problem. Eur. J. Oper. Res. 132(2), 439–452 (2001)

    Article  Google Scholar 

  18. Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling problems. In: Proceedings of IEEE Congress on Evolutionary Computation CEC 2008, pp. 1433–1438, June 2008

    Google Scholar 

  19. Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combinatorial differential evolution. In: Proceedings of 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pp. 2135–2140 (2015). https://doi.org/10.1109/SMC.2015.373

  20. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)

    Article  Google Scholar 

  21. Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)

    Article  Google Scholar 

  22. Schutze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  23. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  24. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial onthe use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  25. Santucci, V., Baioletti, M., Milani, A.: An algebraic differential evolution for the linear ordering problem. In: Companion Material Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 1479–1480 (2015). https://doi.org/10.1145/2739482.2764693

  26. Baioletti, M., Milani, A., Santucci, V.: A new precedence-based ant colony optimization for permutation problems. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 960–971. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_79

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentino Santucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baioletti, M., Milani, A., Santucci, V. (2018). MOEA/DEP: An Algebraic Decomposition-Based Evolutionary Algorithm for the Multiobjective Permutation Flowshop Scheduling Problem. In: Liefooghe, A., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2018. Lecture Notes in Computer Science(), vol 10782. Springer, Cham. https://doi.org/10.1007/978-3-319-77449-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77449-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77448-0

  • Online ISBN: 978-3-319-77449-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics