Automatic Grammar-Based Design of Heuristic Algorithms for Unconstrained Binary Quadratic Programming

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10782)

Abstract

Automatic methods have been applied to find good heuristic algorithms to combinatorial optimization problems. These methods aim at reducing human efforts in the trial-and-error search for promising heuristic strategies. We propose a grammar-based approach to the automatic design of heuristics and apply it to binary quadratic programming. The grammar represents the search space of algorithms and parameter values. A solution is represented as a sequence of categorical choices, which encode the decisions taken in the grammar to generate a complete algorithm. We use an iterated F-race to evolve solutions and tune parameter values. Experiments show that our approach can find algorithms which perform better than or comparable to state-of-the-art methods, and can even find new best solutions for some instances of standard benchmark sets.

Keywords

Automatic algorithm configuration Grammatical evolution Metaheuristics 

References

  1. 1.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)MATHGoogle Scholar
  2. 2.
    Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04244-7_14CrossRefGoogle Scholar
  3. 3.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25566-3_40CrossRefGoogle Scholar
  4. 4.
    López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alidaae, B., Kochenberger, G.A., Ahmadian, A.: 0–1 quadratic programming approach for optimum solutions of two scheduling problems. Int. J. Syst. Sci. 25(2), 401–408 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44(4), 279–303 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Pardalos, P.M., Xue, J.: The maximum clique problem. J. Global Optim. 4(3), 301–328 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pardalos, P.M., Jha, S.: Complexity of uniqueness and local search in quadratic 0–1 programming. Oper. Res. Lett. 11(2), 119–123 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kochenberger, G.A., Glover, F., Alidaee, B., Rego, C.: A unified modeling and solution framework for combinatorial optimization problems. OR Spectr. 26, 237–250 (2004)CrossRefGoogle Scholar
  10. 10.
    Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-based genetic algorithms for algorithm configuration. In: IJCAI, pp. 733–739 (2015)Google Scholar
  11. 11.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 55–70. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34413-8_5CrossRefGoogle Scholar
  12. 12.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: 4th Annual Conference on Genetic and Evolutionary Computation, pp. 11–18. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  13. 13.
    KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automatically building local search SAT solvers from components. Artif. Intell. 232, 20–42 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    López-Ibáñez, M., Stützle, T.: The automatic design of multiobjective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)CrossRefGoogle Scholar
  15. 15.
    Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic design of evolutionary algorithms for multi-objective combinatorial optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 508–517. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_50CrossRefGoogle Scholar
  16. 16.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)CrossRefGoogle Scholar
  17. 17.
    Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Trans. Evol. Comput. 16(3), 406–417 (2012)CrossRefGoogle Scholar
  18. 18.
    Tavares, J., Pereira, F.B.: Automatic design of ant algorithms with grammatical evolution. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 206–217. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29139-5_18CrossRefGoogle Scholar
  19. 19.
    Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006).  https://doi.org/10.1007/11729976_29CrossRefGoogle Scholar
  20. 20.
    Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evol. Mach. 17(3), 251–289 (2016)CrossRefGoogle Scholar
  21. 21.
    Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-44973-4_36CrossRefGoogle Scholar
  22. 22.
    Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Comput. Oper. Res. 51, 190–199 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kochenberger, G., Hao, J.K., Glover, F., Lewis, M., Lü, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17(2), 279–296 (2006)MathSciNetMATHGoogle Scholar
  25. 25.
    Glover, F., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR: Q. J. Oper. Res. 8(3), 239–253 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, Y., Lü, Z., Glover, F., Hao, J.K.: Path relinking for unconstrained binary quadratic programming. EJOR 223(3), 595–604 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Glover, F.: Tabu search. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefGoogle Scholar
  28. 28.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146, pp. 321–354. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-1-4419-1665-5_12
  29. 29.
    Merz, P., Freisleben, B.: Greedy and local search heuristics for unconstrained binary quadratic programming. J. Heuristics 8(2), 197–213 (2002)CrossRefGoogle Scholar
  30. 30.
    Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hyde, M.R., Burke, E.K., Kendall, G.: Automated code generation by local search. J. Oper. Res. Soc. 64(12), 1725–1741 (2013)CrossRefGoogle Scholar
  32. 32.
    Martí, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut problem. INFORMS J. Comput. 21(1), 26–38 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Burer, S., Monteiro, R.D., Zhang, Y.: Rank-two relaxation heuristics for max-cut and other binary quadratic programs. SIAM J. Optim. 12(2), 503–521 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Santa Catarina State UniversityIbiramaBrazil
  2. 2.Federal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations