Advertisement

Worst Improvement Based Iterated Local Search

  • Sara Tari
  • Matthieu Basseur
  • Adrien Goëffon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10782)

Abstract

To solve combinatorial optimization problems, many metaheuristics use first or best improvement hill-climbing as intensification mechanism in order to find local optima. In particular, first improvement offers a good tradeoff between computation cost and quality of reached local optima. In this paper, we investigate a worst improvement-based moving strategy, never considered in the literature. Such a strategy is able to reach good local optima despite requiring a significant additional computation cost. Here, we investigate if such a pivoting rule can be efficient when considered within metaheuristics, and especially within iterated local search (ILS). In our experiments, we compare an ILS using a first improvement pivoting rule to an ILS using an approximated version of worst improvement pivoting rule. Both methods are launched with the same number of evaluations on bit-string based fitness landscapes. Results are analyzed using some landscapes’ features in order to determine if the worst improvement principle should be considered as a moving strategy in some cases.

References

  1. 1.
    Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Whitley, D., Howe, A.E., Hains, D.: Greedy or not? Best improving versus first improving stochastic local search for MAXSAT. In: AAAI Conference on Artificial Intelligence (2013)Google Scholar
  3. 3.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. vol. 1 (1932)Google Scholar
  4. 4.
    Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Conference on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)Google Scholar
  5. 5.
    Basseur, M., Goëffon, A.: Climbing combinatorial fitness landscapes. Appl. Soft Comput. 30, 688–704 (2015)CrossRefGoogle Scholar
  6. 6.
    Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)CrossRefGoogle Scholar
  7. 7.
    Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theoret. Biol. 141(2), 211–245 (1989)CrossRefGoogle Scholar
  8. 8.
    Gary, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness (1979)Google Scholar
  9. 9.
    Basseur, M., Goëffon, A., Lardeux, F., Saubion, F., Vigneron, V.: On the attainability of NK landscapes global optima. In: 7th Annual Symposium on Combinatorial Search (2014)Google Scholar
  10. 10.
    Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15844-5_11CrossRefGoogle Scholar
  11. 11.
    Basseur, M., Goëffon, A.: Hill-climbing strategies on various landscapes: an empirical comparison. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 479–486. ACM (2013)Google Scholar
  12. 12.
    Loureno, H.R., Martin, O.C., Stutzle, T.: Iterated local search. Int. Ser. Oper. Res. Manag. Sci. 321–354 (2003)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Etude et de Recherche en Informatique d’AngersUFR SciencesAngers Cedex 01France

Personalised recommendations