Skip to main content

Proof Theory

  • Chapter
  • First Online:
Introduction to Formal Philosophy

Part of the book series: Springer Undergraduate Texts in Philosophy ((SUTP))

  • 123k Accesses

Abstract

Proof theory began in the 1920s as a part of Hilbert’s program, which aimed to secure the foundations of mathematics by modeling infinitary mathematics with formal axiomatic systems and proving those systems consistent using restricted, finitary means. The program thus viewed mathematics as a system of reasoning with precise linguistic norms, governed by rules that can be described and studied in concrete terms. Today such a viewpoint has applications in mathematics, computer science, and the philosophy of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avigad, J. (2000). Interpreting classical theories in constructive ones. Journal of Symbolic Logic, 65, 1785–1812.

    Article  Google Scholar 

  2. Avigad, J. (2002). Saturated models of universal theories. Annals of Pure and Applied Logic, 118, 219–234.

    Article  Google Scholar 

  3. Avigad, J. (2003). Number theory and elementary arithmetic. Philosophia Mathematica, 11, 257–284.

    Article  Google Scholar 

  4. Avigad, J. (2004). Forcing in proof theory. Bulletin of Symbolic Logic, 10, 305–333.

    Article  Google Scholar 

  5. Avigad, J., & Feferman, S. Gödel’s functional (“Dialectica”) interpretation. In [9] (pp. 337–405).

    Google Scholar 

  6. Barwise, J. (Ed.), (1977). The handbook of mathematical logic. Amsterdam: North-Holland. [Contains a number of introductory articles on proof theory and related topics.]

    Google Scholar 

  7. Beeson, M. J. (1985). Foundations of constructive mathematics. Berlin: Springer.

    Book  Google Scholar 

  8. Bertot, Y., & Castéran, P. (2004). Interactive theorem proving and program development: Coq’Art: The calculus of inductive constructions. Berlin: Springer.

    Book  Google Scholar 

  9. Buss, S. R. (Ed.). (1998). The handbook of proof theory. Amsterdam: North-Holland. [Provides a definitive overview of the subject.]

    Google Scholar 

  10. Buss, S. R. An introduction to proof theory. In Buss [9] (pp. 1–78).

    Google Scholar 

  11. Buss, S. R. First-order proof theory of arithmetic. In Buss [9] (pp. 79–147)

    Google Scholar 

  12. Feferman, S. Theories of finite type related to mathematical practice. In Barwise [6] (pp. 913–971).

    Chapter  Google Scholar 

  13. Friedman, H. (to appear). Boolean relation theory and incompleteness. Cambridge University Press.

    Google Scholar 

  14. Goodstein, R. L. (1957). Recursive number theory: A development of recursive arithmetic in a logic-free equation calculus. Amsterdam: North-Holland.

    Google Scholar 

  15. Hájek, P., & Pudlák, P. (1993). Metamathematics of first-order arithmetic. Berlin: Springer.

    Book  Google Scholar 

  16. Harrison, J. (2009). Handbook of practical logic and automated reasoning. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  17. Hilbert, D. (1922). Neubegründung der Mathematik. Erste Mitteilung. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 1, 157–177. Translated by Ewald, W. (1996). As the new grounding of mathematics. First report. In Ewald, W. (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1115–1134) Oxford: Clarendon.

    Article  Google Scholar 

  18. Kaye, R. (1991). Models of Peano arithmetic. Oxford: Clarendon.

    Google Scholar 

  19. Keisler, H. J. (2006). Nonstandard arithmetic and reverse mathematics. Bulletin of Symbolic Logic, 12, 100–125.

    Article  Google Scholar 

  20. Kohlenbach, U. (2008). Applied proof theory: Proof interpretations and their use in mathematics. Berlin: Springer. [An introduction to proof mining.]

    Google Scholar 

  21. Krajíček, J. (1995). Bounded arithmetic, propositional logic, and complexity theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  22. Kunen, K. (1980). Set theory: An introduction to independence proofs. Amsterdam: North-Holland.

    Google Scholar 

  23. Negri, S., & von Plato, J. (2008). Structural proof theory. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Paris, J., & Harrington, L. A mathematical incompleteness in Peano arithmetic. In [6] (pp. 1133–1142)

    Chapter  Google Scholar 

  25. Pierce, B. (2004). Advanced topics in types and programming languages. Cambridge, MA: MIT Press.

    Google Scholar 

  26. Pohlers, W. Subsystems of set theory and second order number theory. In Buss [9] (pp. 209–335).

    Google Scholar 

  27. Pohlers, W. (2009). Proof theory: The first step into impredicativity. Berlin: Springer. [An introduction to ordinal analysis.]

    Google Scholar 

  28. Pudlák, P. The lengths of proofs. In [9] (pp. 547–637).

    Google Scholar 

  29. Robinson, J. A., & Voronkov, A. (Eds.). (2001). Handbook of automated reasoning (Vols. 1 and 2). Amsterdam/New York: Elsevier; Cambridge: MIT Press.

    Google Scholar 

  30. Sambin, G. (Ed.). (1998). Twenty-five years of constructive type theory. Oxford: Clarenden.

    Google Scholar 

  31. Schwichtenberg, H. Proof theory: Some aspects of cut-elimination. In Barwise [6] (pp. 867–895).

    Google Scholar 

  32. Segerlind, N. (2007). The complexity of propositional proofs. Bulletin of Symbolic Logic, 13, 417–481.

    Article  Google Scholar 

  33. Sieg, W. (1985). Fragments of arithmetic. Annals of Pure and Applied Logic, 28, 33–72.

    Article  Google Scholar 

  34. Sieg, W. (1999). Hilbert’s programs: 1917–1922. Bulletin of Symbolic Logic, 5, 1–44.

    Article  Google Scholar 

  35. Simpson, S. G. (1999). Subsystems of second-order arithmetic. Berlin: Springer

    Book  Google Scholar 

  36. Takeuti, G. (1987). Proof theory (2nd ed.). Amsterdam: North-Holland.

    Google Scholar 

  37. Troelstra, A. S. Realizability. In [9] (pp. 407–473).

    Google Scholar 

  38. Troelstra, A. S., & Schwichtenberg, H. (2000). Basic proof theory (2nd ed.). Cambridge: Cambridge University Press. [An introductory text.]

    Google Scholar 

  39. Troelstra, A. S., & van Dalen, D. (1988). Constructivism in mathematics: An introduction (vols. 1 and 2). Amsterdam: North-Holland. [An overview of constructive mathematics.]

    Google Scholar 

  40. Urquhart, A. (1995). The complexity of propositional proofs. Bulletin of Symbolic Logic, 1, 425–467.

    Article  Google Scholar 

  41. Wiedijk, F. (2006). The seventeen provers of the world. Berlin: Springer.

    Book  Google Scholar 

  42. Zach, R. (2006). Hilbert’s program then and now. In D. Jacquette (Ed.), Philosophy of logic (pp. 411–447). Amsterdam: Elsevier. [A nice historical overview.]

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Avigad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avigad, J. (2018). Proof Theory. In: Hansson, S., Hendricks, V. (eds) Introduction to Formal Philosophy. Springer Undergraduate Texts in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-77434-3_8

Download citation

Publish with us

Policies and ethics