Skip to main content

Computational Models in Science and Philosophy

  • Chapter
  • First Online:
Introduction to Formal Philosophy

Part of the book series: Springer Undergraduate Texts in Philosophy ((SUTP))

  • 123k Accesses

Abstract

Computer models provide formal techniques that are highly relevant to philosophical issues in epistemology, metaphysics, and ethics. Such models can help philosophers to address both descriptive issues about how people do think and normative issues about how people can think better. The use of computer models in ways similar to their scientific applications substantially extends philosophical methodology beyond the techniques of thought experiments and abstract reflection. For formal philosophy, computer models offer a much broader range of representational techniques than are found in traditional logic, probability, and set theory, taking into account the important roles of imagery, analogy, and emotion in human thinking. Computer models make possible investigation of the dynamics of inference, not just abstract formal relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Asterisks (*) indicate recommended readings.

References

Asterisks (*) indicate recommended readings.

  1. Anderson, J. R. (2007). How can the mind occur in the physical universe? Oxford: Oxford University Press.

    Book  Google Scholar 

  2. *Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. New York: Routledge.

    Google Scholar 

  3. Bridewell, W., Langley, P., Todorovski, L., & Dzeroski, S. (2008). Inductive process modeling. Machine Learning, 71, 1–32.

    Article  Google Scholar 

  4. Chen, S., Jain, L., & Tai, C. (2010). Computational economics: A perspective from computational intelligence. Hershe: Idea Group.

    Google Scholar 

  5. Churchland, P. M. (2007). Neurophilosophy at work. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  6. Churchland, P. S. (2002). Brain-wise: Studies in neurophilosophy. Cambridge, MA: MIT Press.

    Google Scholar 

  7. Churchland, P. S., & Sejnowski, T. (1992). The computational brain. Cambridge, MA: MIT Press.

    Google Scholar 

  8. Cramer, C. J. (2002). Essentials of computational chemistry. New York: Wiley.

    Google Scholar 

  9. Danielson, P. (1992). Artificial morality: Virtuous robots for virtual games. New York: Routledge.

    Google Scholar 

  10. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press.

    Google Scholar 

  11. *Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. Oxford: Oxford University Press.

    Google Scholar 

  12. Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representation and dynamics in neurobiological systems. Cambridge, MA: MIT Press.

    Google Scholar 

  13. Galison, P. (1997). Image & logic: A material culture of microphysics. Chicago: University of Chicago Press.

    Google Scholar 

  14. Glymour, C. (2001). The mind's arrows: Bayes nets and graphical causal models in psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  15. Glymour, C. & Danks, D. (2008). Reasons as causes in Bayesian epistemology. Journal of Philosophy, ADD.

    Google Scholar 

  16. Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), The Cambridge handbook of computational psychology (pp. 59–100). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  17. Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.

    Google Scholar 

  18. Haubold, B., & Wiehe, T. (2006). Introduction to computational biology: An evolutionary approach. Basel: Birkhäuser.

    Google Scholar 

  19. Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press/Bradford Books.

    Google Scholar 

  20. Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press/Bradford Books.

    Google Scholar 

  21. Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. Oxford: Oxford University Press.

    Book  Google Scholar 

  22. Josephson, J. R., & Josephson, S. G. (Eds.). (1994). Abductive inference: Computation, philosophy, technology. Cambridge: Cambridge University Press.

    Google Scholar 

  23. Kitano, H. (2002). Computational systems biology. Nature, 420, 206–210.

    Article  Google Scholar 

  24. Langley, P., Simon, H., Bradshaw, G., & Zytkow, J. (1987). Scientific discovery. Cambridge, MA: MIT Press/Bradford Books.

    Google Scholar 

  25. McCauley, R. N., & Bechtel, W. (2001). Explanatory pluralism and the heuristic identity theory. Theory & Psychology, 11, 736–760.

    Article  Google Scholar 

  26. Newell, A., Shaw, J. C., & Simon, H. (1958). Elements of a theory of human problem solving. Psychological Review, 65, 151–166.

    Article  Google Scholar 

  27. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  28. O'Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience. Cambridge, MA: MIT Press.

    Google Scholar 

  29. Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge: Cambridge University Press.

    Google Scholar 

  30. Quine, W. V. O. (1969). Ontological relativity and other essays. New York: Columbia University Press.

    Google Scholar 

  31. *Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge MA: MIT Press/Bradford Books.

    Google Scholar 

  32. Skyrms, B. (1996). The dynamics of rational deliberation. Cambridge, MA: Harvard University Press.

    Google Scholar 

  33. *Sloman, A. (1978). The computer revolution in philosophy. Atlantic Highlands: Humanities Press.

    Google Scholar 

  34. Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search. New York: Springer-Verlag.

    Book  Google Scholar 

  35. Steinhart, E. (2001). The logic of metaphor: Analogous parts of possible worlds. Dordrecht: Kluwer.

    Book  Google Scholar 

  36. Thagard, P. (1988). Computational philosophy of science. Cambridge, MA: MIT Press.

    Google Scholar 

  37. Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12, 435–467.

    Article  Google Scholar 

  38. Thagard, P. (1992). Conceptual revolutions. Princeton: Princeton University Press.

    Google Scholar 

  39. Thagard, P. (1998). Computation and the philosophy of science. In T. W. Bynum & J. H. Moor (Eds.), The digital phoenix: How computers are changing philosophy (pp. 48–61). Oxford: Blackwell.

    Google Scholar 

  40. Thagard, P. (2000). Coherence in thought and action. Cambridge, MA: MIT Press.

    Google Scholar 

  41. Thagard, P. (2004). Causal inference in legal decision making: Explanatory coherence vs. Bayesian networks. Applied Artificial Intelligence, 18, 231–249.

    Article  Google Scholar 

  42. Thagard, P. (2005). Mind: Introduction to cognitive science (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  43. Thagard, P. (2006). Hot thought: Mechanisms and applications of emotional cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  44. Thagard, P. (2007). The moral psychology of conflicts of interest: Insights from affective neuroscience. Journal of Applied Philosophy, 24, 367–380.

    Article  Google Scholar 

  45. Thagard, P. (2009). Why cognitive science needs philosophy and vice versa. Topics in Cognitive Science, 1, 237–254.

    Article  Google Scholar 

  46. Thagard, P. (2010). The brain and the meaning of life. Princeton: Princeton University Press.

    Book  Google Scholar 

  47. *Thagard, P. (2012). The cognitive science of science: Explanation, discovery, and conceptual change. Cambridge, MA: MIT Press.

    Google Scholar 

  48. Thagard, P. (forthcoming). Natural philosophy: From social brains to knowledge, reality, morality, and beauty. Oxford: Oxford University Press.

    Google Scholar 

  49. Thagard, P., & Aubie, B. (2008). Emotional consciousness: A neural model of how cognitive appraisal and somatic perception interact to produce qualitative experience. Consciousness and Cognition, 17, 811–834.

    Article  Google Scholar 

  50. Thagard, P., & Beam, C. (2004). Epistemological metaphors and the nature of philosophy. Metaphilosophy, 35, 504–516.

    Article  Google Scholar 

  51. Thagard, P., & Finn, T. (2011). Conscience: What is moral intuition? In C. Bagnoli (Ed.), Morality and the emotions (pp. 150–159). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  52. Thagard, P., & Litt, A. (2008). Models of scientific explanation. In R. Sun (Ed.), The Cambridge handbook of computational psychology (pp. 549–564). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  53. Thagard, P., & Schröder, T. (2014). Emotions as semantic pointers: Constructive neural mechanisms. In L. F. Barrett & J. A. Russell (Eds.), The psychological construction of emotions (pp. 144–167). New York: Guilford.

    Google Scholar 

  54. Thagard, P., & Stewart, T. C. (2011). The Aha! Experience: Creativity through emergent binding in neural networks. Cognitive Science, 35, 1–33.

    Article  Google Scholar 

  55. Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive Science, 22, 1–24.

    Article  Google Scholar 

  56. Thijssen, J. M. (2007). Computational physics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Thagard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thagard, P. (2018). Computational Models in Science and Philosophy. In: Hansson, S., Hendricks, V. (eds) Introduction to Formal Philosophy. Springer Undergraduate Texts in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-77434-3_24

Download citation

Publish with us

Policies and ethics