Skip to main content

Knowledge Representation for Philosophers

  • Chapter
  • First Online:
Introduction to Formal Philosophy

Part of the book series: Springer Undergraduate Texts in Philosophy ((SUTP))

  • 123k Accesses

Abstract

This article provides an overview of the subfield of Artificial Intelligence known as “Knowledge Representation and Reasoning.” This field uses the techniques of philosophical logic, but aims at providing a theoretical basis for the management of declarative information in automated reasoning systems. Three topics are singled out here for attention: planning and reasoning about actions, description logics, and nonmonotonic logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [26], Patrick Hayes argued that frame-based representations, which had widely been taken to be an alternative to logical representations, could be reproduced in a first-order logic with a mechanism for formalizing defaults. (Hayes used an epistemic operator for this purpose.) The later history vindicated this idea, as ideas about frames and semantic nets were transformed into description logics—representation services that can be embedded in first-order logic, or in well understood extensions of first-order logic. See Sect. 18.4.2, below, for more about description logics.

  2. 2.

    These are [1, 3, 4, 11, 15, 16, 19,20,21, 23, 40, 51].

  3. 3.

    Philosophers should take note. In the philosophical literature, the Frame Problem has been widely misunderstood and wildly overgeneralized. See [58, Section 1.12].

  4. 4.

    I will ignore general default rules in this exposition, and only consider normal defaults.

  5. 5.

    John Pollock’s work, however, is an exception. Pollock developed a theory of nonmonotonic reasoning that is closely related to Argumentation Theory. See, for instance, [52].

Bibliography

  1. Aiello, L. C., Doyle, J., & Shapiro, S. (Eds.). (1996). KR’96: Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann.

    Google Scholar 

  2. Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832–843.

    Article  Google Scholar 

  3. Allen, J. F., Fikes, R., & Sandewall, E. (Eds.). (1989). KR’89: Principles of Knowledge Representation and Reasoning. San Mateo: Morgan Kaufmann.

    Google Scholar 

  4. Allen, J. F., Kautz, H. A., Pelavin, R., & Tennenberg, J. (Eds.). (1991). KR’91: Principles of Knowledge Representation and Reasoning. San Mateo: Morgan Kaufmann.

    Google Scholar 

  5. Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. (Eds.). (2003). The description logic handbook: Theory, implementation and applications. Cambridge: Cambridge University Press.

    Google Scholar 

  6. Baader, F., Horrocks, I., & Sattler, U. (2008). Description logics. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation (pp. 135–179). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  7. Besnard, P. (1992). Default logic. Berlin: Springer.

    Google Scholar 

  8. Besnard, P., & Hunter, A. (2008). Elements of argumentation. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  9. Brachman, R. J., & Levesque, H. J. (Eds.). (1985). Readings in knowledge representation. Los Altos: Morgan Kaufmann.

    Google Scholar 

  10. Brachman, R. J., & Levesque, H. (2004). Knowledge representation and reasoning. Amsterdam: Elsevier.

    Google Scholar 

  11. Brewka, G., & Lang, J. (Eds.). (2008). KR2008: Proceedings of the Eleventh International Conference. Menlo Park: AAAI Press.

    Google Scholar 

  12. Brewka, G., Niemelä, I., & Truscyński, M. (2008). Nonmonotonic reasoning. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation (pp. 239–284). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  13. Church, A. (1959). Introduction to mathematical logic (Vol. 1). Princeton: Princeton University Press.

    Google Scholar 

  14. Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. Cambridge, MA: The MIT Press.

    Google Scholar 

  15. Cohn, A. G., Schubert, L., & Shapiro, S. C. (Eds.). (1998). KR’98: Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann.

    Google Scholar 

  16. Cohn, A. G., Giunchiglia, F., & Selman, B. (Eds.). (2000). KR2000: Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann.

    Google Scholar 

  17. Davis, E. (1991). Representations of common sense knowledge. San Francisco: Morgan Kaufmann.

    Google Scholar 

  18. Delgrande, J. P., & Schaub, T. (2000). The role of default logic in knowledge representation. In J. Minker (Ed.), Logic-based artificial intelligence (pp. 107–126). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  19. Doherty, P., Mylopoulos, J., & Welty, C. A. (Eds.). (2006). KR2006: Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning. Menlo Park: AAAI Press.

    Google Scholar 

  20. Doyle, J., Sandewall, E., & Torasso, P. (Eds.). (1994). KR’94: Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann.

    Google Scholar 

  21. Dubois, D., Welty, C., & Williams, M.-A. (Eds.). (2004). KR2004: Principles of Knowledge Representation and Reasoning. AAAI Press.

    Google Scholar 

  22. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence, 77(2), 321–257.

    Article  Google Scholar 

  23. Fensel, D., Giunchiglia, F., McGuinness, D., & Williams, M.-A. (Eds.). (2002). KR2002: Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann.

    Google Scholar 

  24. Gelfond, M. (2008). Answer sets. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation (pp. 285–316). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  25. Hanks, S., & McDermott, D. (1986). Default reasoning, nonmonotonic logics and the frame problem. In T. Kehler & S. Rosenschein (Eds.), Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 328–333), Los Altos. Morgan Kaufmann: American Association for Artificial Intelligence.

    Google Scholar 

  26. Hayes, P. (1981). The logic of frames. In B. Webber & N. J. Nilsson (Eds.), Readings in artificial intelligence (pp. 451–458). Los Altos: Morgan Kaufmann.

    Chapter  Google Scholar 

  27. Hayes, P. (1987). A critique of pure reason. Computational Intelligence, 3, 179–185.

    Article  Google Scholar 

  28. Horty, J. F. (1994). Moral dilemmas and nonmonotonic logic. Journal of Philosophical Logic, 23(1), 35–65.

    Article  Google Scholar 

  29. Horty, J. F. (1995). Deontic logic and nonmonotonic reasoning. In D. Nute (Ed.), Essays in defeasible deontic logic. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  30. Horty, J. (1997). Nonmonotonic foundations for deontic logic. In D. Nute (Ed.), Defeasible deontic logic (pp. 17–44). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  31. Horty, J. F. (2001). Agency and deontic logic. Oxford: Oxford University Press.

    Book  Google Scholar 

  32. Horty, J. F. (2007). Defaults with priorities. Journal of Philosophical Logic, 36(4), 367–413.

    Article  Google Scholar 

  33. Konolige, K. (1994). Autoepistemic logic. In D. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming, volume 3: Nonmonotonic reasoning and uncertain reasoning (pp. 217–295). Oxford: Oxford University Press.

    Google Scholar 

  34. Kowalski, R. A., & Toni, F. (1996). Abstract argumentation. Artificial Intelligence and Law, 4, 275–296.

    Article  Google Scholar 

  35. Levesque, H. J., & Brachman, R. J. (1995). A fundamental tradeoff in KR and reasoning. In R. J. Brachman & H. J. Levesque (Eds.), Readings in knowledge representation. Los Altos: Morgan Kaufmann.

    Google Scholar 

  36. Lifschitz, V. (1988). Circumscriptive theories: A logic-based framework for knowledge representation. Journal of Philosophical Logic, 17(3), 391–441.

    Article  Google Scholar 

  37. Lifschitz, V., Morgenstern, L., & Plaisted, D. (2008). Knowledge representation and classical logic. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation (pp. 3–88). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  38. Lin, F. (1995). Embracing causality in specifying the indirect effects of actions. In C. Mellish (Ed.), Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1985–1991). San Francisco: Morgan Kaufmann.

    Google Scholar 

  39. Lin, F. (2008). Situation calculus. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation (pp. 649–669). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  40. Lin, F., Sattler, U., & Truszczynski, M. (Eds.). (2010). KR2010: Proceedings of the Twelfth International Conference. Menlo Park: AAAI Press.

    Google Scholar 

  41. McCain, N., & Turner, H. (1995). A causal theory of ramifications and qualifications. In C. Mellish (Ed.), Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1978–1984). San Francisco: Morgan Kaufmann.

    Google Scholar 

  42. McCarthy, J. (1959). Programs with common sense. In Proceedings of the Teddington Conference on the Mechanization of Thought Processes (pp. 75–91), London. Her Majesty’s Stationary Office.

    Google Scholar 

  43. McCarthy, J. (1969). Situations, actions, and causal laws. In M. Minsky (Ed.), Semantic information processing (pp. 410–417). Cambridge: The MIT Press. Originally published in 1963 as a technical report.

    Google Scholar 

  44. McCarthy, J. (1980). Circumscription—a form of non-monotonic reasoning. Artificial Intelligence, 13(1–2), 27–39.

    Article  Google Scholar 

  45. McCarthy, J. (1990). Formalizing common sense: Papers by John McCarthy. Norwood: Ablex Publishing Corporation. Edited by Vladimir Lifschitz.

    Google Scholar 

  46. McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4 (pp. 463–502). Edinburgh: Edinburgh University Press.

    Google Scholar 

  47. McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence. The AI Magazine, 27(4), 12–14.

    Google Scholar 

  48. McDermott, D. (1987). A critique of pure reason. Computational Intelligence, 3, 151–160.

    Article  Google Scholar 

  49. Minsky, M. (1981). A framework for representing knowledge. In J. Haugeland (Ed.), Mind design (pp. 95–128). Cambridge, MA: The MIT Press. Originally published in 1974 as an MIT technical report.

    Google Scholar 

  50. Mueller, E. T. (2006). Commonsense reasoning. Amsterdam: Elsevier.

    Book  Google Scholar 

  51. Nebel, B., Rich, C., & Swartout, W. (Eds.). (1992). KR’92: Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann.

    Google Scholar 

  52. Pollock, J. L. (2001). Defeasible reasoning with variable degrees of justification. Artificial Intelligence, 133(1–2), 233–282.

    Article  Google Scholar 

  53. Prakken, H., & Vreeswijk, G. (2001). Logics for defeasible argumentation. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic, volume IV (2nd ed., pp. 219–318). Amsterdam: Kluwer Academic Publishers

    Chapter  Google Scholar 

  54. Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1–2), 81–132.

    Article  Google Scholar 

  55. Reiter, R. (2001). Knowledge in action: Logical foundations for specifying and implementing dynamical systems. Cambridge, MA: The MIT Press.

    Google Scholar 

  56. Rissland, E. L., Ashley, K. D., & Loui, R. P. (2003). AI and law: A fruitful synergy. Artificial Intelligence, 150(1–2), 1–15.

    Article  Google Scholar 

  57. Schaub, T. (1998). The family of default logics. In D. M. Gabbay & P. Smets (Eds.), Handbook of defeasible reasoning and uncertainty management systems, volume 2: Reasoning with actual and potential contradictions (pp. 77–134). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  58. Shanahan, M. (1997). Solving the frame problem. Cambridge, MA: The MIT Press.

    Google Scholar 

  59. Simon, H. A. (1966). On reasoning about actions (Technical Report Complex Information Processing Paper #87), Carnegie Institute of Technology, Pittsburgh.

    Google Scholar 

  60. Stefik, M. J. (1995). An introduction to knowledge systems. San Francisco: Morgan Kaufmann.

    Google Scholar 

  61. Thielscher, M. (2001). The qualification problem: A solution to the problem of anomalous models. Artificial Intelligence, 131(1–2), 1–37.

    Article  Google Scholar 

  62. Thomason,R. H. (2003). Logic and artificial intelligence. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/fall2003/entries/logic-ai/.

  63. Turner, H. (2008). Nonmonotonic causal logic. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation (pp. 759–776). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  64. van Harmelen, F., Lifschitz, V., & Porter, B. (Eds.). (2008). Handbook of knowledge representation. Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richmond H. Thomason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomason, R.H. (2018). Knowledge Representation for Philosophers. In: Hansson, S., Hendricks, V. (eds) Introduction to Formal Philosophy. Springer Undergraduate Texts in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-77434-3_18

Download citation

Publish with us

Policies and ethics