Skip to main content

Majority Model on Random Regular Graphs

  • Conference paper
  • First Online:
Book cover LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

Consider a graph \(G=(V,E)\) and an initial random coloring where each vertex \(v \in V\) is blue with probability \(P_b\) and red otherwise, independently from all other vertices. In each round, all vertices simultaneously switch their color to the most frequent color in their neighborhood and in case of a tie, a vertex keeps its current color. The main goal of the present paper is to analyze the behavior of this basic and natural process on the random d-regular graph \(\mathbb {G}_{n,d}\). It is shown that for \(\epsilon >0\), \(P_b \le 1/2-\epsilon \) results in final complete occupancy by red in \(\mathcal {O}(\log _d\log n)\) rounds with high probability, provided that \(d\ge c/\epsilon ^2\) for a sufficiently large constant c. We argue that the bound \(\mathcal {O}(\log _d\log n)\) is asymptomatically tight. Furthermore, we show that with high probability, \(\mathbb {G}_{n,d}\) is immune; i.e., the smallest dynamic monopoly is of linear size. A dynamic monopoly is a subset of vertices that can “take over” in the sense that a commonly chosen initial color eventually spreads throughout the whole graph, irrespective of the colors of other vertices. This answers an open question of Peleg [22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an n-node graph \(G=(V,E)\), we say an event happens with high probability (w.h.p.) if its probability is at least \(1-o(1)\) as a function of n. Notice we do not require the probability \(1-1/n^c\), for a constant \(c>0\), as it is done in some contexts.

  2. 2.

    For a more formal description of the construction, please see [7], and notice since the second element always is chosen randomly, the generated configuration is random.

References

  1. Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A: Math. Gen. 21(19), 3801 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amini, H., Draief, M., Lelarge, M.: Flooding in weighted sparse random graphs. SIAM J. Discrete Math. 27(1), 1–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hypercube. Comb. Probab. Comput. 18(1–2), 17–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Comb. Theory Ser. A 24(3), 296–307 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, E.: Dynamic monopolies of constant size. J. Comb. Theory Ser. B 83(2), 191–200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B., Fernandez de la Vega, W.: The diameter of random regular graphs. Combinatorica 2(2), 125–134 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Oliveira, M.J.: Isotropic majority-vote model on a square lattice. J. Stat. Phys. 66(1), 273–281 (1992)

    Article  MATH  Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and Its Applications: Volume I, vol. 3. Wiley, New York (1968)

    MATH  Google Scholar 

  10. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in tori. Discrete Appl. Math. 137(2), 197–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fountoulakis, N., Panagiotou, K.: Rumor spreading on random regular graphs and expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM-2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15369-3_42

    Chapter  Google Scholar 

  12. Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (social) influence networks. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 433–446. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2_30

    Chapter  Google Scholar 

  13. Gärtner, B., Zehmakan, A.N.: (Biased) majority rule cellular automata. arXiv preprint arXiv:1711.10920 (2017)

  14. Gärtner, B., Zehmakan, A.N.: Color war: cellular automata with majority-rule. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 393–404. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_29

    Chapter  Google Scholar 

  15. Goles, E., Olivos, J.: Comportement périodique des fonctions à seuil binaires et applications. Discrete Appl. Math. 3(2), 93–105 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janson, S., Luczak, T., Rucinski, A.: Random Graphs, vol. 45. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  17. Kaaser, D., Mallmann-Trenn, F., Natale, E.: On the voting time of the deterministic majority process. arXiv preprint arXiv:1508.03519 (2015)

  18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  19. Land, M., Belew, R.K.: No perfect two-state cellular automata for density classification exists. Phys. Rev. Lett. 74(25), 5148 (1995)

    Article  Google Scholar 

  20. Mourrat, J.-C., Valesin, D., et al.: Phase transition of the contact process on random regular graphs. Electron. J. Probab. 21 (2016)

    Google Scholar 

  21. Peleg, D.: Local majority voting, small coalitions and controlling monopolies in graphs: a review. In: Proceedings of 3rd Colloquium on Structural Information and Communication Complexity, pp. 152–169 (1997)

    Google Scholar 

  22. Peleg, D.: Immunity against local influence. In: Dershowitz, N., Nissan, E. (eds.) Language, Culture, Computation. Computing - Theory and Technology. LNCS, vol. 8001, pp. 168–179. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45321-2_8

    Chapter  Google Scholar 

  23. Poljak, S., Turzík, D.: On pre-periods of discrete influence systems. Discrete Appl. Math. 13(1), 33–39 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schonmann, R.H.: Finite size scaling behavior of a biased majority rule cellular automaton. Phys. A: Stat. Mech. Appl. 167(3), 619–627 (1990)

    Article  MathSciNet  Google Scholar 

  25. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(2), 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stefánsson, S.Ö., Vallier, T.: Majority bootstrap percolation on the random graph G(n, p). arXiv preprint arXiv:1503.07029 (2015)

Download references

Acknowledgments

The authors would like to thank Mohsen Ghaffari for several stimulating conversations and Jozsef Balogh and Nick Wormald for referring to some relevant prior results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad N. Zehmakan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gärtner, B., Zehmakan, A.N. (2018). Majority Model on Random Regular Graphs. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics