Advertisement

Kernelization for Maximum Happy Vertices Problem

  • Hang Gao
  • Wenyu Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)

Abstract

The homophyly phenomenon is very common in social networks. The Maximum Happy Vertices (MHV) is a newly proposed problem related to homophyly phenomenon. Given a graph \(G=(V,E)\) and a vertex coloring of G, we say that a vertex v is happy if v shares the same color with all its neighbors, and unhappy, otherwise, and that an edge e is happy, if its two endpoints have the same color, and unhappy, otherwise. Given a partial vertex coloring of G with k number of different colors, the k-MHV problem is to color all the remaining vertices such that the number of happy vertices is at least l. We study k-MHV from the parameterized algorithm perspective; we prove that k-MHV has an exponential kernel of \(2^{kl+l}\,+\,kl\,+\,k\,+\,l\) on general graph. For planar graph, we get a much better polynomial kernel of \(7(kl+l)+k-10\).

Keywords

Maximum happy vertices Happy coloring Parameterized complexity Kernelization Planar graph 

Notes

Acknowledgments

We would like to thank the anonymous reviewers for their detailed reviews and suggestions.

References

  1. 1.
    Li, A., Peng, P.: The small-community phenomenon in networks. Math. Struct. Comput. Sci. 22(3), 373–407 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput. Sci. 593(C), 117–131 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 159–170. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21398-9_13 CrossRefGoogle Scholar
  4. 4.
    Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44543-4_22 CrossRefGoogle Scholar
  5. 5.
    Aravind, N.R., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness results for happy coloring problems. CoRR abs/1705.08282 (2017)Google Scholar
  6. 6.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  7. 7.
    Chen, J.E.: Parameterized computation and complexity: a new approach dealing with np-hardness. J. Comput. Sci. Technol. 20(1), 18–37 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer International Publishing, Heidelberg (2015)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, J., Yang, Y., Guo, J., Chen, J.: Planar graph vertex partition for linear problem kernels. J. Comput. Syst. Sci. 79(5), 609–621 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of TransportationJilin UniversityChangchunChina
  2. 2.School of Information ScienceGuangdong University of Finance and EconomicsGuangzhouChina

Personalised recommendations