Skip to main content

Finding Tight Hamilton Cycles in Random Hypergraphs Faster

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

  • 2652 Accesses

Abstract

In an r-uniform hypergraph on n vertices a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least \(C \log ^3n/n\).

Our result partially answers a question of Dudek and Frieze (Random Struct Algorithms 42:374–385, 2013) who proved that tight Hamilton cycles exists already for \(p=\omega (1/n)\) for \(r=3\) and \(p=(e + o(1))/n\) for \(r\ge 4\) using a second moment argument. Moreover our algorithm is superior to previous results of Allen et al. (Random Struct Algorithms 46:446–465, 2015) and Nenadov and Škorić (arXiv:1601.04034) in various ways: the algorithm of Allen et al. is a randomised polynomial time algorithm working for edge probabilities \(p\ge n^{-1+\varepsilon }\), while the algorithm of Nenadov and Škorić is a randomised quasipolynomial time algorithm working for edge probabilities \(p\ge C\log ^8n/n\).

The second author was supported by Austrian Science Fund (FWF): P26826, and European Research Council (ERC): No. 639046.

The third and fourth authors were supported by DFG grant PE 2299/1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Writing \(\mathcal {O}^*\) means we ignore polylogarithmic factors.

References

  1. Allen, P., Böttcher, J., Kohayakawa, Y., Person, Y.: Tight Hamilton cycles in random hypergraphs. Random Struct. Algorithms 46(3), 446–465 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18(2), 155–193 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput. 43(1), 280–299 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B.: The evolution of sparse graphs. In: Graph Theory and Combinatorics (Cambridge, 1983), pp. 35–57. Academic Press, London (1984). MR 777163 (86i:05119)

    Google Scholar 

  5. Bollobás, B., Fenner, T.I., Frieze, A.: An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica 7(4), 327–341 (1987). MR 931191 (89h:05049)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clemens, D., Ehrenmüller, J., Person, Y.: A Dirac-type theorem for Hamilton Berge cycles in random hypergraphs. Discrete Mathematical Days. Extended Abstracts of the 10th “Jornadas de matemática discreta y algorítmica” (JMDA), Barcelona, Spain, 6–8 July 2016, pp. 181–186. Elsevier, Amsterdam (2016)

    Google Scholar 

  7. Dudek, A., Frieze, A.: Loose Hamilton cycles in random uniform hypergraphs. Electron. J. Combin. 18(1), Paper 48, 14 (2011). MR 2776824 (2012c:05275)

    Google Scholar 

  8. Dudek, A., Frieze, A.: Tight Hamilton cycles in random uniform hypergraphs. Random Struct. Algorithms 42(3), 374–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Friedgut, E.: Sharp thresholds of graph properties, and the \(k\)-sat problem. J. Am. Math. Soc. 12(4), 1017–1054 (1999). With an appendix by Jean Bourgain

    Article  MathSciNet  MATH  Google Scholar 

  10. Frieze, A.: Loose Hamilton cycles in random 3-uniform hypergraphs. Electron. J. Combin. 17(1), Note 28, 4 (2010). MR 2651737 (2011g:05268)

    Google Scholar 

  11. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  12. Johansson, A., Kahn, J., Vu, V.: Factors in random graphs. Random Struct. Algorithms 33(1), 1–28 (2008). 2428975 (2009f:05243)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  14. Komlós, J., Szemerédi, E.: Limit distribution for the existence of Hamiltonian cycles in a random graph. Discrete Math. 43(1), 55–63 (1983). MR 680304 (85g:05124)

    Article  MathSciNet  MATH  Google Scholar 

  15. Korshunov, A.D.: Solution of a problem of Erdős and Renyi on Hamiltonian cycles in non-oriented graphs. Sov. Math. Dokl. 17, 760–764 (1976)

    Google Scholar 

  16. Korshunov, A.D.: Solution of a problem of P. Erdős and A. Renyi on Hamiltonian cycles in undirected graphs. Metody Diskretn. Anal. 31, 17–56 (1977)

    Google Scholar 

  17. Krivelevich, M.: Triangle factors in random graphs. Comb. Probab. Comput. 6(3), 337–347 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kühn, D., Osthus, D.: On Pósa’s conjecture for random graphs. SIAM J. Discrete Math. 26(3), 1440–1457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montgomery, R.: Embedding bounded degree spanning trees in random graphs. arXiv:1405.6559v2 (2014)

  20. Nenadov, R., Škorić, N.: Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs. arXiv preprint arXiv:1601.04034 (2017)

  21. Poole, D.: On weak Hamiltonicity of a random hypergraph. arXiv:1410.7446 (2014)

  22. Pósa, L.: Hamiltonian circuits in random graphs. Discrete Math. 14(4), 359–364 (1976). MR 0389666 (52 #10497)

    Article  MathSciNet  MATH  Google Scholar 

  23. Riordan, O.: Spanning subgraphs of random graphs. Comb. Probab. Comput. 9(2), 125–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rödl, V., Ruciński, A., Szemerédi, E.: A Dirac-type theorem for 3-uniform hypergraphs. Combin. Probab. Comput. 15(1–2), 229–251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shamir, E.: How many random edges make a graph Hamiltonian? Combinatorica 3(1), 123–131 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Person .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Allen, P., Koch, C., Parczyk, O., Person, Y. (2018). Finding Tight Hamilton Cycles in Random Hypergraphs Faster. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics