The Graph Tessellation Cover Number: Extremal Bounds, Efficient Algorithms and Hardness

  • Alexandre Abreu
  • Luís Cunha
  • Tharso Fernandes
  • Celina de Figueiredo
  • Luis Kowada
  • Franklin Marquezino
  • Daniel Posner
  • Renato Portugal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)


A tessellation of a graph is a partition of its vertices into vertex disjoint cliques. A tessellation cover of a graph is a set of tessellations that covers all of its edges. The t-tessellability problem aims to decide whether there is a tessellation cover of the graph with t tessellations. This problem is motivated by its applications to quantum walk models, in especial, the evolution operator of the staggered model is obtained from a graph tessellation cover. We establish upper bounds on the tessellation cover number given by the minimum between the chromatic index of the graph and the chromatic number of its clique graph and we show graph classes for which these bounds are tight. We prove \(\mathcal {NP}\)-completeness for t-tessellability if the instance is restricted to planar graphs, chordal (2, 1)-graphs, (1, 2)-graphs, diamond-free graphs with diameter five, or for any fixed t at least 3. On the other hand, we improve the complexity for 2-tessellability to a linear-time algorithm.


Staggered quantum walk Clique graph Tessellation 


  1. 1.
    Venegas-Andraca, S.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15(1), 85–101 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Abreu, A., Cunha, L., Fernandes, T., de Figueiredo, C., Kowada, L., Marquezino, F., Posner, D., Portugal, R.: Bounds and complexity for the tessellation problem. Mat. Contemp. (2017, accepted)Google Scholar
  5. 5.
    Szwarcfiter, J.L.: A survey on clique graphs. In: Reed, B.A., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics. CBMOS, pp. 109–136. Springer, New York (2003)Google Scholar
  6. 6.
    West, D.: Introduction to Graph Theory. Pearson, London (2000)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman Co., San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Zatesko, L.M., Carmo, R., Guedes, A.L.P.: Edge-colouring of triangle-free graphs with no proper majors. In: II Encontro de Teoria da Computação, pp. 71–74 (2017)Google Scholar
  9. 9.
    Koreas, D.P.: The NP-completeness of chromatic index in triangle free graphs with maximum vertex of degree 3. Appl. Math. Comput. 83(1), 13–17 (1997)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Peterson, D.: Gridline graphs: a review in two dimensions and an extension to higher dimensions. Discrete Appl. Math. 126(2–3), 223–239 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bonomo, F., Durán, G., Groshaus, M., Szwarcfiter, J.: On clique-perfect and K-perfect graphs. Ars Comb. 80, 97–112 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bodlaender, H., Kloks, T., Richard, B., van Leeuwen, J.: Approximation for lambda-colorings of graphs. Comput. J. 47, 1–12 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Protti, F., Szwarcfiter, J.L.: Clique-inverse graphs of bipartite graphs. J. Comb. Math. Comb. Comput. 40, 193–203 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Roussopoulos, N.D.: A max \(\{\!{\rm m},\, {\rm n}\!\}\) algorithm for determining the graph H from its line graph G. Inf. Process. Lett. 2, 108–112 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    McConnell, R., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 2, pp. 536–545 (1994)Google Scholar
  17. 17.
    Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree seven are class I. J. Comb. Theory B 83(2), 201–212 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cai, L., Ellis, J.A.: NP-completeness of edge-colouring some restricted graphs. Discrete Appl. Math. 30(1), 15–27 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Konno, N., Portugal, R., Sato, I., Segawa, E.: Partition-based discrete-time quantum walksGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexandre Abreu
    • 1
  • Luís Cunha
    • 2
  • Tharso Fernandes
    • 3
    • 4
  • Celina de Figueiredo
    • 1
  • Luis Kowada
    • 2
  • Franklin Marquezino
    • 1
  • Daniel Posner
    • 1
  • Renato Portugal
    • 4
  1. 1.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Universidade Federal FluminenseNiteróiBrazil
  3. 3.Universidade Federal do Espírito SantoVitóriaBrazil
  4. 4.Laboratório Nacional de Computação CientíficaPetrópolisBrazil

Personalised recommendations