Skip to main content

Mycoremediation of Agricultural Soil: Bioprospection for Sustainable Development

  • Chapter
  • First Online:
Book cover Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Contamination of water, air, and soil by hazardous toxic substances is one of the major problems faced all over the world. The role of microorganism in the detoxification of soil and environment is distinct and well known. Mycoremediation is an attractive technology in which fungi are used to break down or degrade hazardous toxic substances into less toxic or nontoxic forms. Fungi mostly used as mycoremediator are Pleurotus ostreatus, Rhizopus arrhizus, Phanerochaete chrysosporium, P. sordida, Trametes hirsuta, T. versicolor, Lentinus tigrinus, L. edodes, etc. Its application falls into two categories: in situ and ex situ. The in situ methods treat the contaminated soil in the location in which it is found, whereas ex situ processes require excavation of contaminated soil before they can be put to bioremediation. The present waste disposal and treatment method does not seem to solve the problem of environmental degradation and soil depletion very effectively. Therefore, there is a need to seek alternative means of remediating the contaminants for sustainable development. Hence, in such a situation, mycoremediation is advisable to detoxify the polluted soil and environment with less use of chemicals, energy, and time. However, extensive studies are needed for exploration of fungi as a potential mycoremediator in order to attain agricultural sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

AmDNT:

Amino-dinitrotoluene

CBA:

Chlorobenzoic acids

DDT:

Dichlorodiphenyltrichloroethane

LiP:

Lignin peroxidase

MnP:

Manganese peroxidase

PAH:

Polycyclic aromatic hydrocarbons

PCBs:

Polychlorobenzoic acids

SVOCs:

Semi-volatile organic compounds

TNT:

Trinitrotoluene

VOCs:

Volatile organic compounds

References

  • Adenipekun CO, Fasidi IO (2005) Bioremediation of oil polluted soil by Lentinus subnudus, a Nigerian white rot fungus. Afr J Biotechnol 4(8):796–798

    CAS  Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai1295-22. Appl Environ Microbiol 65:2926–2933

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anastasi A, Vizzini A, Prigione V, Varese GC (2009) Wood degrading fungi: morphology, metabolism and environmental applications. In: Varma A, Chauhan AK (eds) A textbook of molecular biotechnology. I.K. International, India, pp 957–993

    Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    Article  PubMed  CAS  Google Scholar 

  • Azab MS, Peterson PJ, Young TWK (1990) Uptake of cadmium by fungal biomass. Microbios 62:23–28

    CAS  Google Scholar 

  • Azadpour A, Powell PD, Matthews J (1997) Use of lignin degrading fungi in bioremediation. Remediation 7:25–49

    Article  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180. https://doi.org/10.1007/s11274-016-2137-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812. https://doi.org/10.1016/j.envpol.2009.04.019

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi C, Volponi G, Bonadonna L (2006) Comparison of three different media for the detection of E. coli and coliforms in water. Water Sci Technol 54(3):141–145

    Article  PubMed  CAS  Google Scholar 

  • Blanca AL, Angus JB, Katarina S, Joe LR, Nicholas JR (2007) The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. J Hazard Mater 14:340–347

    Google Scholar 

  • Bonugli-Santos RC, Durrant LR, DaSilva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine derived fungi. Enzym Microb Technol 46:32–37

    Article  CAS  Google Scholar 

  • Borràs E, Caminal G, Sarra M, Novotny C (2010) Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biol Biochem 42:2087–2093

    Article  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Casieri L, Anastasi A, Prigione V, Varese GC (2010) Survey of ectomycorrhizal, litter-degrading, and wood-degrading basidiomycetes for dye decolorization and ligninolytic enzyme activity. Anton Leeuw Int J G 98:483–504

    Article  CAS  Google Scholar 

  • D’Annibale, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72(1):28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255. https://doi.org/10.1007/s10532-009-9297-4

    Article  PubMed  CAS  Google Scholar 

  • da Silva NA, Birolli WG, Seleghim MHR, Porto ALM (2013). Biodegradation of the organophosphate pesticide profenofos by marine fungi. In: Patil YB, Rao P (eds) Applied bioremediation-active and aassive approaches. Rijeka: InTechWeb, pp 149–180. https://doi.org/ 10.5772/56372

  • Deacon J (2006) Fungal biology. Blackwell, Malden, p 371

    Google Scholar 

  • Demirbas A (2001) Heavy metal bioaccumulation by mushroom from artificially fortified soils. Food Chem 74:293–301

    Article  CAS  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5–6):467–491

    Article  PubMed  CAS  Google Scholar 

  • Dhawale SW, Dhawale SS, Dean-Ross D (1992) Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol 58:3000–3006

    PubMed  PubMed Central  CAS  Google Scholar 

  • Donnelly PK, Fletcher JS (1994) Potential use of mycorrhizal fungi as bioremediation agents. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, American Chemical Society Symposium Series 563. ACS Chicago, Illinois, pp 93–99

    Chapter  Google Scholar 

  • Dugal S, Gangawane M (2012) Metal tolerance and potential of Penicillium species for use in mycoremediation. J Chem Pharm Res 4:2362–2366

    CAS  Google Scholar 

  • EL-Morsy EM (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia 96:1183–1189

    Article  CAS  Google Scholar 

  • EPA (1990) Engineering bulletin: slurry biodegradation, EPA/540/2-90/016. Office of Solid Waste and Emergency Response, Washington, DC, pp 1–8

    Google Scholar 

  • EPA (1995) Bioventing principles and practice. Volume I: bioventing, EPA/540/R-95/534a. Office of Research and Development, 88

    Google Scholar 

  • EPA (1997) Innovative uses of compost-composting of soils contaminated by explosives, EPA/530/F-997-045, pp 1–4

    Google Scholar 

  • EPA (1998) An analysis of composting as an environmental remediation technology, EPA/530-R-98-008, pp 116

    Google Scholar 

  • EPA (2000) Engineered approaches to in situ bioremediation of chlorinated solvents: fundamentals and field applications, EPA-542-R-00-008. Office of Solid Waste and Emergency Response, Washington, DC, p 144

    Google Scholar 

  • EPA (2004) How to evaluate alternative clean-up technologies for underground storage tank sites-. a guide for corrective action plan reviewers, EPA 510-R-04-002. Office of Solid Waste and Emergency Response, Washington, DC, p 240

    Google Scholar 

  • Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cementation of bio-products generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chem Eng, Article ID 329676, pp 6

    Google Scholar 

  • Farnet AM, Gil G, Ruaudel F, Chevremont AC, Ferre E (2009) Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Geoderma 149:267–271

    Article  CAS  Google Scholar 

  • Felsot AS, Racke KD, Hamilton DJ (2003) Disposal and degradation of pesticide waste. Rev Environ Contam Toxicol 177:123–200

    PubMed  CAS  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124

    Article  CAS  Google Scholar 

  • Frishmuth RA, Ratz JW, Blicker BR, Hall JF, Downey DC (1995) In-Situ bioventing in deep soils at arid sites. In: Vidic RD, Pohland FG (eds) Innovative technologies for site remediation and hazardous waste management, Proc Natl Conf American Society of Civil Engineers, New York, pp 157–164

    Google Scholar 

  • FRTR (2003) Remediation technologies screening matrix and reference guide, Version 4.0

    Google Scholar 

  • Gadd G (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gadd GM, Esfahani JB, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28(2–3):36–55. https://doi.org/10.1016/j.fbr.2014.05.001

    Article  Google Scholar 

  • Garon D, Krivobok S, Seigle-Murandi F (2000) Fungal degradation of fluorene. Chemosphere 40:91–97

    Article  PubMed  CAS  Google Scholar 

  • Gaur AC (1999) Microbial technology for composting of agricultural residues by improved methods. ICAR, New Delhi, p 72

    Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526. https://doi.org/10.1002/elsc.200520098

    Article  CAS  Google Scholar 

  • Gibbs JT, Alleman BC, Gillespie RD, Foote EA, McCall SE, Snyder FA, Hicks JE, Crowe RK, Ginn J (1999) Bioventing nonpetroleum hydrocarbons. In: Engineered approaches for in situ bioremediation of chlorinated solvent contamination. Fifth International in situ and on-site bioremediation symposium, Battelle Press, Columbus, Ohio, pp 7–14

    Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147–161

    CAS  Google Scholar 

  • Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know? In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, pp 3–27

    Chapter  Google Scholar 

  • Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29:2496–2503

    Article  PubMed  CAS  Google Scholar 

  • Gurug KS, Tanabe S (2001) Contamination by persistent organochlorines and butylin compounds in the west coast of Sri Lanka. Pollut Bull 42(3):179–186

    Article  Google Scholar 

  • Hamsavathani V, Aysha OS, Valli S (2015) Biodegradation of xenobiotics: a review on petroleum hydrocarbons and pesticide degradation. W J Pharma Pharmaceut Sci 4(11):1791–1808

    CAS  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hazen TC (2010) Cometabolic bioremediation. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2505–2514

    Chapter  Google Scholar 

  • Hofrichter M, Scheibner K, Bublitz F, Schneegaβ I, Ziegenhagen D, Fritsche W (1999) Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 52:161–166

    Google Scholar 

  • Isikhuemhen OS, Anoliefo G, Oghale O (2003) Bioremediation of crude oil polluted soil by the white-rot fungus, Pleurotus tuberregium (Fr.) Sing. Environ Sci Pollut Res 10(2):108–112

    Article  CAS  Google Scholar 

  • Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 4:53–61. https://doi.org/10.4489/MYCO.2009.37.1.053

    Article  Google Scholar 

  • Jibran AK, Milsee Mol JP (2011) Pleurotus sajor-caju protein: a potential biosorptive agent. Adv Bio Tech 4:25–27

    Google Scholar 

  • Joutney NT, Bahafid W, Sayel H, Ghachtouli NE (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F (eds) Biodegradation – life of science. InTech, Rejika, pp 289–320

    Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals, vol 19. Springer-Verlag, Berlin, pp 31–64

    Chapter  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res, Article ID 805187, 1–11

    Article  CAS  Google Scholar 

  • Kearney PC, Kellog ST (1985) Microbial adaptation to pesticides. Pure Appl Chem 57:389–403

    Article  Google Scholar 

  • King RB, Sheldon JK, Long GM (1997) Practical environmental bioremediation: the field guide, 2nd edn. Lewis, Boca Raton, p 208

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combination–microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bisht S, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Kurek E, Czaban J, Bollag J (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbial 43:1011–1015

    CAS  Google Scholar 

  • Lamar RT, White RB (2001) Mycoremediation: commercial status and recent developments. In: Magar VS, von Fahnestock MF, Leeson A (eds) Proceedings Sixth International Symposium on In Situ and On-Site Bioremediation. San Diego, pp 263–278

    Google Scholar 

  • Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4(2):190–195

    Google Scholar 

  • Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman & Hall, New York, pp 141–150

    Chapter  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effects of heavy metalpollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Litchfield CD (1993) In-situ bioremediation: basis and practices. In: Levin MA, Gealt MA (eds) Biotreatment of industrial and hazardous wastes. McGraw-Hill, New York, p 331

    Google Scholar 

  • Luo D, Xie YF, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 34(2):359–365

    PubMed  CAS  Google Scholar 

  • da Luz JM, Paes SA, Nunes MD, da Silva Mde C, Kasuya MC (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS ONE 4(8):e69386. https://doi.org/10.1371/journal.pone.0069386

    Article  CAS  Google Scholar 

  • Ma J, Zhai G (2012) Microbial bioremediation in omics era: opportunities and challenges. J Bioremed Biodegr 3:e120. https://doi.org/10.4172/2155-6199.1000e120

    Article  CAS  Google Scholar 

  • McErlen C, Marchant R, Banat IM (2006) An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Anton Leeuw Int J G 90:147–158

    Article  CAS  Google Scholar 

  • Meriel W (2005) Pesticide: sowing poison, growing hunger, reaping sorrow. Pesticide Action Network Asia and Pacific Policy Research and Analysis, vol 2. Penang, Malaysia, pp 1–27

    Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375

    Article  PubMed  CAS  Google Scholar 

  • Muhammad MJ, Ikram-ul-Haq, Farrukh S (2007) Biosorption of mercury from industrial effluent by fungal consortia. Bioremed J 11:149–153

    Article  CAS  Google Scholar 

  • Nakagawa A, Osawa S, Hirata T, Yamagishi Y, Hosoda J, Horikoshi T (2006) 2,4-Dichlorophenol degradation by the soil fungus Mortierella sp. Biosci Biotechnol Biochem 70(2):525–527

    Article  PubMed  CAS  Google Scholar 

  • Nagy B, Maicaneanu A, Indolean C, Mânzatu C, Silaghi-Dumitrescu L, Majdik C (2014) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem E 45(3):921–929

    Article  CAS  Google Scholar 

  • NFESC (2005) Remediation technology selection: biopile/composting. NFESC Environmental Services Web Site. NFESC. http://enviro.nfesc.navy.mil

  • Novotny C, Erbanova T, Cajthaml P, Rothchild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853

    Article  PubMed  CAS  Google Scholar 

  • Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lange E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36(10):1545–1551

    Article  CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444. https://doi.org/10.1007/s11157-013-9320-4

    Article  CAS  Google Scholar 

  • Olusola SA, Anslem EE (2010) Bioremediation of a crude oil polluted soil with Pleurotus pulmonarius and Glomus mosseae using Amaranthus hybridus as a test plant. J Bioremed Biodegr 1:113. https://doi.org/10.4172/2155-6199.1000113

    Article  CAS  Google Scholar 

  • Orlandelli RC, de Almeida TT, Alberto RN, Polonio JC, Azevedo JL, Pamphile JA (2015) Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz J Microbiol 46(2):359–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  PubMed  CAS  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    Article  PubMed  CAS  Google Scholar 

  • Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res 4:293–297

    Google Scholar 

  • Petrini O, Sieber T, Toti L, Viret O (1992) Ecology metabolite production and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    Article  PubMed  CAS  Google Scholar 

  • Philp J, Atlas R (2005) Bioremediation of contaminated soil and aquifers. In: Atlas RM, Jim CP (eds) Bioremediation: applied microbial solution for real-world environmental clean up. ASM Press, Washington, DC, p 139

    Chapter  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260laccase. Appl Environ Microbiol 65:3805–3809

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 41:293–298

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability. Springer Nature Singapore Pte Ltd. (ISBN 978–3–319-68957-9)

    Google Scholar 

  • Prasad R, Pham GH, Kumari R, Singh A, Yadav V, Sachdev M, Peskan T, Hehl S, Oelmuller R, Garg AP, Varma A (2005) Sebacinaceae: culturable mycorrhiza-like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas, vol 4. Springer-Verlag, Berlin, pp 291–312

    Chapter  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, Cham, pp 1–7

    Google Scholar 

  • Purnomo AS, Mori T, Takagi K, Kondo R (2011) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegrad 65(5):691–695

    Article  CAS  Google Scholar 

  • Raghukumar C, Chandramohan D, Michel FCJ, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18:105–108

    Article  CAS  Google Scholar 

  • Rajput Y, Shit S, Shukla A, Shukla K (2011) Biodegradation of malachite green by wild mushroom of Chhattisgarh. J Exp Sci 2(10):69–72

    CAS  Google Scholar 

  • Rayner JL, Snape I, Walworth JL, Harvey PM, Ferguson SH (2007) Petroleum–hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg Sci Technol 48:139–153. https://doi.org/10.1016/j.coldregions.2006.11.001

    Article  Google Scholar 

  • Remoudaki E, Hatzikioseyian A, Tsezos M (2007) Metabolically mediated metal immobilization processes for bioremediation, Proceedings of Balkan Mineral Processing Conference, Delfi, Greece, pp 481–486

    Google Scholar 

  • Rhodes CJ (2014) Mycoremediation (bioremediation with fungi)-growing mushrooms to clean the earth. Chem Speciat Bioavailab 26(3):196–198

    Article  CAS  Google Scholar 

  • Rockne K, Reddy K (2003) Bioremediation of contaminated sites. Proceedings international e-conference on modern trends in foundation engineering: geotechnical challenges and solutions, IIT Madras, India, Pp 22

    Google Scholar 

  • Ross IS, Townsley CC (1986) The uptake of heavy metals by filamentous fungi. In: Eccles H, Hunt S (eds) Immobilization of ions by biosorption. Ellis Horwood, Chichester, pp 49–57

    Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MP, Boulanger LA, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. J Environ Biol 13:159–167

    CAS  Google Scholar 

  • Schauer F, Borriss R (2004) Biocatalysis and biotransformation. In: Tkacz JS, Lane L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer/Plenum, New York, pp 237–306

    Chapter  Google Scholar 

  • Singh H (2006) Mycoremediation – fungal bioremediation. Wiley, New Jersey, p 573

    Google Scholar 

  • Singh A, Gauba P (2014) Mycoremediation: a treatment for heavy metal pollution of soil. J Civil Eng Environ Technol 1(4):59–61

    Google Scholar 

  • Singh S, Nain L (2014) Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Natn Sci Acad 80(2):473–481

    Article  Google Scholar 

  • Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016–6027

    Article  CAS  Google Scholar 

  • Sivasankaran MA, Reddy SS, Govindaradjan S, Ramesh R (2007) Organochlorine residuals in ground water of Pondicherry region. J Environ Sci Eng 49(1):7–12

    PubMed  CAS  Google Scholar 

  • Steffen K, Hofrichter M, Hatakka A (2000) Mineralization of 14C-labelledsynthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  PubMed  CAS  Google Scholar 

  • Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbial 41:237–245

    CAS  Google Scholar 

  • Strong PJ, Burgess JE (2008) Treatment methods for wine-related ad distillery wastewaters: a review. Bioremed J 12:70–87

    Article  CAS  Google Scholar 

  • Suthar S (2007) Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresour Technol 98(8):1608–1614

    Article  PubMed  CAS  Google Scholar 

  • Sutherland C, Venkobachar C (2013) Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. Int J Plant Animal Environ Sci 4:193–203

    Google Scholar 

  • Suthersan SS (1999) Remediation engineering: design concepts. CRC Press LLC, Boca Raton, p 384

    Google Scholar 

  • Talley J (2005) Introduction of recalcitrant compounds. In: Jaferey W, Talley L (eds) Bioremediation of recalcitrant compounds. CRC, Boca Raton, pp 1–9

    Chapter  Google Scholar 

  • Tanaka H, Itakura S, Enoki A (1999) Hydroxyl radical generation by an extracellular low- molecular–weight substance and phenol oxidase activities during wood degradation by the white–rot basidiomycetes Trametes versicolor. J Biotechnol 75(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 4:825–830

    Article  CAS  Google Scholar 

  • Terrazas E, Alvarez T, Benoit G, Mattiasson B (2005) Isolation and characterization of a white rot fungus Bjerkandera sp. strain capable of oxidizing phenanthrene. Biotechnol Lett 27:845–851

    Article  CAS  Google Scholar 

  • Tian LS, Dai CC, Zhao YT, Zhao M, Yong YH, Wang XX (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. Chin Environ Sci (in Chinese) 27(6):757–762

    CAS  Google Scholar 

  • Tigini V, Prigione V, Toro SD, Fava F, Varese GC (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Factories 8:5

    Article  CAS  Google Scholar 

  • Tiwari G, Singh SP (2014) Application of bioremediation on solid waste management. J Bioremed Biodegr 5:248. https://doi.org/10.4172/2155-6199.1000248

    Article  CAS  Google Scholar 

  • Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2, 4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 4:1079–1083. https://doi.org/10.1007/s10529-013-1179-5

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals: review. Biotechnol Prog 11:235–250

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  PubMed  CAS  Google Scholar 

  • Yan G, Viraraghavan T (2000) Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA 26:119–123

    CAS  Google Scholar 

Download references

Acknowledgment

The authors humbly acknowledge the assistance provided by the Hon’ble vice chancellor, S. D. Agricultural University, Sardarkrushinagar, Gujarat-385506 (India) and the Department of Plant Protection, Visva-Bharati, Sriniketan, Birbhum, West Bengal-731236 (India) for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purohit, J., Chattopadhyay, A., Biswas, M.K., Singh, N.K. (2018). Mycoremediation of Agricultural Soil: Bioprospection for Sustainable Development. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_4

Download citation

Publish with us

Policies and ethics