Skip to main content

Role of Phytochelatins (PCs), Metallothioneins (MTs), and Heavy Metal ATPase (HMA) Genes in Heavy Metal Tolerance

  • Chapter
  • First Online:
Book cover Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Phytoremediation has been approved an economical technology for the cleanup of environmental contaminants and biomass production. Germplasm of hyperaccumulators is the backbone of this technology. Therefore, understanding the genetics of hyperaccumulation is an important tool for the enhancement of hyperaccumulation efficiency. Phytochelatins (PCs) and metallothioneins (MTs) and heavy metal ATPase (HMA) genes play a crucial role in signaling, uptake, detoxification, and accumulation of metal. Their combined role enhances the hyperaccumulation efficiency. This chapter highlights the role of these genes, their mechanism of action, their structure, and their applications in the transgenic approach of hyperaccumulation. Further, it also highlights the role of uptake and detoxification of metals by cellular mechanisms which facilitate the phytoremediation of heavy metals from contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul MR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Adams JP, Adeli A, Hsu CY, Harkess RL, Page GP, de Pamphillis CW, Schulth EB, Yuceer C (2011) Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. J Exp Bot 62(11):3737–3752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  PubMed  CAS  Google Scholar 

  • Andresen E, Mattusch J, Wellenreuther G, Thomas G, Arroyo Abad U, Kupper H (2013) Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L. Metallomics 5(10):1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Bai XJ, Liu LJ, Zhang CH, Ge Y, Cheng W (2011) Effect of H2O2 pretreatment on Cd tolerance of different rice cultivars. Rice Sci 18:29–35

    Article  Google Scholar 

  • Baligar VC, Shaffert RE, Dos Santos HL, Pitta GVE, Filho B, AFDeC (1993) Soil aluminium effects on uptake influx and transport of nutrients in sorghum genotypes. Plant Soil 150(2):271–277

    Article  CAS  Google Scholar 

  • Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulce S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbic 34(1):3–14

    Google Scholar 

  • Barabasz A, Wilkowska A, Tracz K, Ruszczyñska A, Bulska E, Mills RF (2013) Expression of HvHMA2 in tobacco modifies Zn-Fe-Cd homeostasis. J Plant Physiol 170:1176–1186

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson B, Asp H, Jensn P (1994) Uptake and distribution of calcium and phosphorus in beech (Fagus sylvatica) as influences by aluminum and nitrogen. Tree Physiol 14(1):63–73

    Article  PubMed  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62(7):2251–2264

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2013) Low-pH and aluminium resistance in Arabidopsis correlates with high cytosolic magnesium content and increase magnesium uptake by plant roots. Plant Cell Physiol 54(7):1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Bractic AM, Majic DB, Samardzc JT, Maksimovic VR (2009) Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complexes stress stimuli. J Plant Physiol 166:996–1000

    Article  CAS  Google Scholar 

  • Brunetti P, Zanella L, Depoolis A, Dilitta D, Ceuhetti V, Falasca G, Barbieri M, Altamura MM, Castantino P, Cardarelli M (2015) Cadmium inducible expression of the ABC-type Trnasporter AtABCC3 increases phytochelatin mediated cadmium tolerance in Arabidopsis. J Exp Bot 66(13):3815–3829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhary K, Sumira J, Khan S, (2016) Heavy metal ATPase (HMA2, HMA3 & HMA4) genes in hyperaccumulation mechanism of heavy metals. Plant metal interaction (emerging remediation techniques) 545–556

    Chapter  Google Scholar 

  • Chen BC, Lai HY, Juang KW (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol Environ Saf 80:393–400

    Article  PubMed  CAS  Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatins synthases. J Plant Physiol 163:319–332

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cumming JR, Eckert RT, Evans LS (1986) Effect of aluminium on 32P uptake and translocation by red spruce seedlings. Can J For Res 16(4):864–867

    Article  CAS  Google Scholar 

  • Dago A, Gonzalez I, Arino C, Martinez-Coronado A, Higueras P, Diaz-Cruz JM, Esteban M (2014) Evaluation of mercury stress in plants from the Almaden mining district by analysis of phytochelatins and their Hg complexes. Environ Sci Technol 48(11):6256–6263

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biol 32:527–533

    Article  CAS  Google Scholar 

  • Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Chakrabarty D (2010) Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Funct Integr Genomics 14(2):401–417

    Article  CAS  Google Scholar 

  • Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Trivedi PK, Tripathi RD, Chakraborty D (2014) Heavy metal induce oxidative stress and genome wide modulation in transcriptome of rice root. Funct Integr Genomics 14(2):401–417

    Article  PubMed  CAS  Google Scholar 

  • Fassler E, Robinson BH, Gupta SK, Schulin R (2010) Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nut Cycle Agro 87:339–352

    Article  CAS  Google Scholar 

  • Franchia N, Piccinnia E, Ferroa D, Bassod G, Spolaoree B, Santovitoa G, Ballarin L (2015) Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium. Aquat Toxicol 152:47–56

    Article  CAS  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 12:635–647

    Article  PubMed  CAS  Google Scholar 

  • Gomes MMS, Cambraia J, Sant’s anna R, Estevao MM (1985) Aluminium effects on uptake and translocation of nitrogen in sorghum (Sorghum bicolor, L. Moench). J Plant Nutr 8(6):457–465

    Article  CAS  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plant a little easier. Funct Plant Biol 32:481–494

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Loeffler S, Winnacker EL, Zenk MH (1989) Phytochelatins the heavy metals binding peptides of plants are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu CS, Liu LQ, Deng YM, Zhu XD, Huang SZ, Lu XQ (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IIMT2b, gene enhances copper tolerance in Arabidopsis thaliana. Bull Environ Cont Toxic 94:247–253

    Article  CAS  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Xu L, Su X, Wang H, Gao S, Xu J, Que Y (2013) ScMT2-1-3 a Metallothionein gene of sugarcane play an important role in the regulation of heavy metal tolerance accumulation. Hindawi Publishing Corporation BioMed Research International. https://doi.org/10.1155/2013/904769

    Google Scholar 

  • Hameed A, Rasool S, Azooz MM, Hossain MA, Ahanger MA Ahmad P, (2016) Heavy metal stress: plant responses and signalling. Plant metal interaction (emerging remediation techniques) 557–583

    Chapter  Google Scholar 

  • Hanger BC (1979) The movement of calcium in plants. Commun Soil Sci Plant Anal 10(1–2):171–193

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Ka SO (2011) Plant-metallothioneins-metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  PubMed  CAS  Google Scholar 

  • Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Hustard S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. Plant Physiol 159(3):1125–1137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain MA, Ashrafuzzaman M, Hossain AKMZ, Ismail MR, Koyama H (2014) Role of accumulated calcium in alleviating aluminum injury in wheat plants. Sci World J 2014:5–6

    Google Scholar 

  • Huang J, Bachelard EP (1993) Effects of aluminium on growth and cation uptake in seedlings of Eucalyptus mannifera and Pinus radiata. Plant Soil 149(1):121–127

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in responses to metal stress. Aquat Toxicol 99:86–92

    Article  PubMed  CAS  Google Scholar 

  • Huang GY, Wang YS, Ying GG (2011) Cadmium inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorhiza), its encoding protein shows metal-binding ability. J Exp Mar Biol Ecol 405:128–132

    Article  CAS  Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22(6):2045–2057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inhouhe M (2005) Phytohelatins. Braz J Plant Physiol 17:65–78

    Article  Google Scholar 

  • Israr M, Sahi SV (2006) Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch Environ Contam Toxicol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397

    Article  PubMed  CAS  Google Scholar 

  • Kasai M, Sasaki M, Yamamoto Y, Matsumoto H (1992) Aluminum stress increases Kp efflux and activities of ATP- and PPi dependent Hp pumps of tonoplast-enriched membrane vesicles from barley roots. Plant Cell Physiol 33(7):1035–1039

    CAS  Google Scholar 

  • Kuhnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatins synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot 65(15):4241–4253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Trivedi PK (2016) Heavy metal stress signalling in plants. Plant metal interaction (emerging remediation techniques) 585–603

    Chapter  Google Scholar 

  • Kwankua W, Sengsai S, Muangphra P, Euawong N (2012) Screening for plants sensitive to heavy metals using cytotoxic and genotoxic biomarkers. Kasetsart J-Nat Sci 46:10–23

    CAS  Google Scholar 

  • Lee S (2014) Artificial induction of cadmium tolerance and its further enhancement via heterologous co-expression of SpHMT1 and AtPCS1 in the yeast cells. J Korean Soc Appl Biol Chem 57:307–310

    Article  CAS  Google Scholar 

  • Li Z, Xing D (2010) Mitochondrial pathway leading to programmed cell death induced by aluminum phytotoxicity in Arabidopsis. Plant Signal Behav 5:1660–1662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminium interactions in soybean in relation to aluminium tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141(2):674–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper induced hydrogen peroxide upregulation of a metallothioneins gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99–108

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Terall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128(4):1359–1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lori V, Pietrini F, Massacci A, Zacchini M (2015) Morphophysiological responses, heavy metal accumulation and phytoremoval ability in four willow clones exposed to cadmium under hydroponics. In: Phytoremediation. Springer International Publishing, pp. 87–98

    Google Scholar 

  • Lu L, Tian SK, Yang XE, Li TQ, He ZI (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166(6):579–587

    Article  PubMed  CAS  Google Scholar 

  • Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  PubMed  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68(1):1–13

    Article  CAS  Google Scholar 

  • Mahmood T (2010) Phytoextraction of heavy metals the process and scope for remediation of contaminated soils. Soil Environ 29(2):91–109

    CAS  Google Scholar 

  • Mariano ED, Keltjens WG (2005) Long term effects of aluminum exposure on nutrient uptake by maize genotypes differing in aluminum resistance. J Plant Nutr 28(2):323–333

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 203–221

    Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FM (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61(4):561–572

    Article  PubMed  CAS  Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60(1):57–68

    Article  CAS  Google Scholar 

  • Mehdawi EFA, Quinn CF, Pilon-Smits EAH (2011) Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory curt. Curr Biol 21:1440–1449

    Article  PubMed  CAS  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulations mechanisms to phytoremediation. Environ Sci Pollut Res 16(2):162–175

    Article  CAS  Google Scholar 

  • Meyer C, Verbruggen N (2012) The use of the modal species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnol 30:9–14

    Article  CAS  Google Scholar 

  • Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S (2014) Two metal tolerance proteins, MTP1 and MTP4 are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot 66(3):1001–1015

    Article  PubMed  CAS  Google Scholar 

  • Mils RF, Krjiger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176

    Article  CAS  Google Scholar 

  • Mirza N, Mahmood Q, Shah MM, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic arsenic content. Sci World J 2014:1–11

    Article  CAS  Google Scholar 

  • Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia Crassipes and Centella asiatica. Inter J Environ Sci Dev 3(1):89–95

    Google Scholar 

  • Moustakas M, Ouzounidou G, Lannoye R (1995) Aluminum effects on photosynthesis and elemental uptake in an aluminium-tolerant and non-tolerant wheat cultivar. J Plant Nutr 18(4):669–683

    Article  CAS  Google Scholar 

  • Mugica-Alvarez V, Cortes-Jimenez V, Vaca-Mier M, Dommguez-Soria V (2015) Phytoremediation of mine tailings using Lolium multiflorum. Int J Environ Sci Dev 6(4):246–251

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine water: a review. Glob Environ Res 4:135–150

    CAS  Google Scholar 

  • Nematian MA, Kazemeini F (2013) Accumulation of Pb, Zn, Cu and Fe in plants and hyperaccumulator choice in Galali iron mine area. Iran Intl J Agri Crop Sci 5(4):426–432

    Google Scholar 

  • Nichol BE, Oliveira LA, Glass ADM, Saiddiqi MY (1993) The effect of aluminum on the influx of calcium, potassium, ammonium nitrate and phosphate in an aluminum sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol 101(4):1263–1266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126

    Article  CAS  Google Scholar 

  • Palma JM, Gupta DK, Corpas FJ (2013) Metalloenzymes involved in the metabolism of reactive oxygen species and heavy metal stress. In: Dharmendra K, Gupta Francisco J, Corpas José M (eds) Palma Heavy metal stress in plants. Springer, Berlin, pp. 1–17

    Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park W, Feng Y, Ahn SJU (2014) Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa. Biotechnol Biofuels 7(1):96–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrlova J, Potesil D, Mikelova R (2006) Attomolevoltammetric determination of metallothionein. Electrochim Acta 51:5112–5119

    Article  CAS  Google Scholar 

  • Phukan P, Phukan R, Phukan SN (2015) Heavy metal uptake capacity of Hydrilla verticillata: a commonly available aquatic plant. Int Res J Environ Sci 4(3):35–40

    CAS  Google Scholar 

  • Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in Phytolacca americana L. from the southeastern United States. Northeast Nat 16:155–162

    Article  Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–232

    Article  Google Scholar 

  • Purcino AAC, Alves VMC, Parentoni SN, Belele CL, Loguercio LL (2003) Aluminum effects on nitrogen uptake and nitrogen assimilating enzymes in maize genotypes with contrasting tolerance to aluminum toxicity. J Plant Nutr 26(1):31–61

    Article  CAS  Google Scholar 

  • Qiao XQ, Zheng ZZ, Zhang LF, Wang JH, Shi GX, Xu XY (2015) Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L. Subcellular distribution, polyamine and proline. Chemosphere 120:179–187

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Elliott DC (1992) Mechanism of aluminium inhibition of net 45Ca2p uptake by amaranthus protoplasts. Plant Physiol 98(2):632–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro MAQ, de Almeida AAF, Mielke MS, Gomes FP, Pires MV, Baligar VC (2013) Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. J Plant Nutr 36(8):1161–1179

    Article  CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr (VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24(7):1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Roy AK, Sharma A, Talukder G (1988) Some aspects of aluminum toxicity in plants. Bot Rev 54(2):145–178

    Article  Google Scholar 

  • Saba G, Parizanganeh AH, Zamani A, Saba J (2015) Phytoremediation of heavy metals contaminated environments: screening for native accumulator plants in Zanjan-Iran. Int J Environ Res 9(1):309–316

    CAS  Google Scholar 

  • Salla V, Hardaway CJ, Sneddon J (2011) Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soil from Southwest Louisiana. Microchem J 97(2):207–212

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Sharma DM, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK, Aditi P, Yukti M, Alok A (2014) Newly modified silica-based magnetically driven nano-adsorbent: a sustainable and versatile platform for efficient and selective recovery of cadmium from water and fly-ash ameliorated soil. Sep Purif Technol 127:121–130

    Article  CAS  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P, Vig AP (2016) Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: an overview. Plant metal interaction (emerging remediation techniques) Elsevier, New York,p 263–283

    Google Scholar 

  • Shen GH, Zhu C, Du QZ (2010) Genome wide identifications of phytochelatins and phytoch-synth domain-containing phytochelatins family from rice. Electron J Biol 6:73–79

    Google Scholar 

  • Shine AM, Shakya VP, Idhurm A (2015) Phytochelatin synthase is required for tolerating metal toxicity in a basidomycete yeast and is a conserved factor involved in metal homeostasis in fungi. Fungal Biol Biotechnol 2:1–13. 101186/540694

    Article  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784

    Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V (2011) Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasm 248:839–847

    Article  CAS  Google Scholar 

  • Sunitha MSL, Prashant S, Kumar SA, Rao S, Narasu M, Kishor PBK (2013) Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants over-expressing phytochelatins synthase and metallothionein genes. PCBMB 13:33–48

    Google Scholar 

  • Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatins synthase is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thirumoorthy N, Sunder AS, Kumar KTM, Kumar MS, Ganesh GNK, Chatterjee M (2011) A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol 9:54–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tong X, Yuan L, Luo L, Yin X (2014) Characterization of a selenium-tolerant rhizosphere strain from a novel se-hyperaccumulating plant Cardamine hupingshanesis. Sci World J 2014:1–8

    Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Kayama E, ClemenciaZombrano M, Kaski M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd hyperaccumulating ecotype of Thlaspicaerulescens. Plant J 66:852–862

    Article  PubMed  CAS  Google Scholar 

  • Usha B, Prashanth SR, Parida A (2007) Differential expression of two metallothionein encoding genes during heavy metal stress in the mangrove species, Avicennia marina (Forsk.) Vierh. Curr Sci 93:1215–1219

    CAS  Google Scholar 

  • Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108

    Article  PubMed  CAS  Google Scholar 

  • Usha B, Keeran NS, Harikrishnan M, Kavitha K, Parida A (2011) Characterization of type 3 metallothionein isolated from Porteresia coarctata. Biol Plant 55:119–124

    Article  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46(12):1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Wang QQ, Wang LH, Han RB, Yang LY, Zhou Q, Huang XH (2015) Effects of bisphenol A on antioxidant system in soybean seedling roots. Environ Toxicol Chem 34(5):1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DM, Follett JM (1991) Effect of aluminium on onions, asparagus and squash. J Plant Nutr 14(9):897–912

    Article  CAS  Google Scholar 

  • Xia B, Shen S, Xue F (2013) Phytoextraction of heavy metals from highly contaminated soils using Sauropus androgynus. Soil Sedim Contamin 22(6):631–640

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146:1637–1650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Zhang M, Tian S, Lu L, Shohag MJI (2014) Metallothionein 2 (SaMT2) from Sedum alfredii confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS One 9(7):102750

    Article  CAS  Google Scholar 

  • Zsoldos F, Vashegyi A, Bona L, Pecsvaradi A, Szegletes Z (2000) Growth of and potassium transport in winter wheat and durum wheat as affected by various aluminum exposure times. J Plant Nutr 23(7):913–926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply thankful to Prof. Aditiya Shastri for the generous financial support to complete this research work, the Bioinformatics Centre of Banasthali University, Newai (Rajasthan), India, for computational work, and also to the funding support from “MHRD Project on Center of Excellence in Water and Energy” Frontier Areas of Science and Technology (FAST 5-5/2014 TS VII).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, K., Agarwal, S., Khan, S. (2018). Role of Phytochelatins (PCs), Metallothioneins (MTs), and Heavy Metal ATPase (HMA) Genes in Heavy Metal Tolerance. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_2

Download citation

Publish with us

Policies and ethics