Skip to main content

Application of Myconanotechnology in the Sustainable Management of Crop Production System

  • Chapter
  • First Online:
Book cover Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Nanoscience deals with the manipulation of materials at atomic, molecular and macromolecular scales, where properties differ significantly from those at a larger scale. Nanotechnology has since long been successfully used in fields like medicine, environmental science, agriculture, etc. Though nanotechnology has been applied in production, processing, storing, packaging and transport of agricultural products, its application in crop protection and production is a less-researched area. Nanoparticles are synthesized using chemical and physical methods; this, however, involves the use of toxic chemicals besides high-energy requirement for their production. Scientists, therefore, are trying to synthesize metallic nanoparticles using living organisms such as bacteria, fungi and plants to avoid toxicity. The production of nanoparticles through biological methods is cheap, reliable, safe, easy to handle and nontoxic. A diverse range of fungi have been used for the production of nanoparticles using different metals. In recent years, nanofungicides, nanopesticides and nanoherbicides are extensively being used in agriculture. Nanoparticle-mediated gene transfer would be useful for generating resistance in crops against pathogens and pests. This chapter gives an overview of production of myconanoparticles using different fungal species and its potential applications in agriculture for enhancing crop production by improving growth and protection against different diseases. It will also include amelioration of toxicity of chemical pesticides, insecticides, herbicides and chemical nanoparticles on plant ecosystem. The knowledge of environment-friendly myconanotechnology can play an important role in the field of agriculture for sufficient production of food for the overgrowing population of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA (2012) Nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol 2:107

    Article  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad Z, Ahmad Z, Pandey R, Sharma S, Khuller GK (2005) Alginate nanoparticles as antituberculosis drug carriers, formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176

    Google Scholar 

  • Ahmed I, Batal E, Nora M, Kenawy E, Yassin AS, Magdy A et al (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39

    Article  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Galiev ES, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allard T, Menguy N, Salomon J, Calligaro T, Weber T, Calas G et al (2004) Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil). Geochim Cosmochim Acta 68(14):3079–3094

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Azmath P, Baker S, Rakshith D, Satish S (2016) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 24:140–146

    Article  PubMed  Google Scholar 

  • Baac H, Hajos JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng 94(4):815–819

    Article  PubMed  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    Article  PubMed  CAS  Google Scholar 

  • Balinova A, Mladenova R, Shtereva D (2007) Solid-phase extraction on sorbents of different retention mechanisms followed by determination by gas chromatography-e-mass spectrometric and gas chromatography-electron capture detection of pesticide residues in crops. J Chromatogr A 1150:136–144

    Article  PubMed  CAS  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bao H, Hao N, Yang Y, Zhao D (2003) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:491–498

    Google Scholar 

  • Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N et al (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6:376–380

    Article  CAS  Google Scholar 

  • Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85

    Article  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B: Biointerfaces 47:160–164

    Article  PubMed  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  PubMed  CAS  Google Scholar 

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun S (2010) Bioreduction of trivalent aurum to nanocrystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545

    Article  PubMed  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  PubMed  CAS  Google Scholar 

  • Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:12

    Article  CAS  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2(1):21–36

    Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  PubMed  CAS  Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  PubMed  CAS  Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev 60(3):299–327

    Article  PubMed  CAS  Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer Nanoribbon. Proceedings of the 218th ECS meeting, 10–15 October 2010, Las Vegas, Nevada. pp 2278–2278

    Google Scholar 

  • Chaudhari SP, Damahe A, Kumbhar P (2016) Silver nanoparticles – a review with focus on green synthesis. Int J Pharma Res Rev 5(3):14–28

    CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  PubMed  CAS  Google Scholar 

  • Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subhramanyam BS, Devakumar C, Goswami A (2010) Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. AIP Conf Proc 127(6):154–157

    Article  CAS  Google Scholar 

  • Das S, Ng WK, Tan RB (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 47(1):139–151

    Article  PubMed  CAS  Google Scholar 

  • Deepa K, Panda T (2014) Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. J Nanosci Nanotechnol 14:3455–3463

    Article  PubMed  CAS  Google Scholar 

  • Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol 51:543–547

    PubMed  CAS  Google Scholar 

  • Devika R, Elumalai S, Manikandan E, Eswaramoorthy D (2012) Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. Sci Rep 1(12):1–5

    Google Scholar 

  • Dias MA, Lacerda ICA, Pimentel PF, De Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50

    Article  PubMed  CAS  Google Scholar 

  • Du X, He J (2011) Hierarchically mesoporous silica nanoparticles: extraction, amino-functionalization, and their multipurpose potentials. Langmuir 27(6):2972–2979

    Article  PubMed  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, Da Silva JPS, De Souza GIH, Rodrigues FA et al (2010) Ecosystem protection by effluent bioremediation, silver nanoparticles impregnation in a textile fabrics process. J Nanopart Res 12:285–292

    Article  CAS  Google Scholar 

  • Dyk JSV, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307

    Article  PubMed  CAS  Google Scholar 

  • Elchiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:1–10

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • ETC group (2004) ETC Group releases Down on the Farm: The impact of nanoscale technologies on food and agriculture, ETC Group News Release, www.etc.group.org

    Google Scholar 

  • Falletta E, Bonini M, Fratini E, Nostro LA, Pesavento G, Becheri A (2008) Clusters of poly (acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766

    Article  CAS  Google Scholar 

  • Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T (2009) Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids Surf B: Biointerfaces 74:304–308

    Article  PubMed  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Filipenko EA, Filipenko ML, Deineko EV, Shumnyi VK (2007) Analysis of integration sites of T-DNA insertions in transgenic tobacco plants. Cytol Genet 41:199–203

    Article  Google Scholar 

  • Gade A, Gaikwad S, Duran N, Rai M (2013) Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol Appl Biochem 60(5):482–493

    Article  PubMed  CAS  Google Scholar 

  • Gaikwad S, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai MK et al (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24:1974–1982

    CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1007

    Article  PubMed  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  PubMed  CAS  Google Scholar 

  • Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027

    Article  PubMed  CAS  Google Scholar 

  • Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N (2015) Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J Pharma Sci 10:138–145

    Article  Google Scholar 

  • Gruere GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198

    Article  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-imidacloprid pesticide. Biochem Physiol 92:83–91

    CAS  Google Scholar 

  • Haq MU, Rathod V, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015) Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci Nanotechnol Int J 5(1):1–8

    Google Scholar 

  • Honary S, Barabadi H, Fathabad EG, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12(1):7–11

    CAS  Google Scholar 

  • Husseiny SM, Salah TA, Anter HA, Suef B (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni Seuf Univ J Appl Sci 4:225–231

    Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani, a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Ishida K, Cipriano TF, Rocha GM, Weissmüller G, Gomes F, Miranda K et al (2013) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz, Rio de Janeiro, pp 1–9

    Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdarb JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbial Biotechnol 97(2):859–869

    Article  CAS  Google Scholar 

  • Jha Z, Behar N, Sharma SN, Chandel G, Sharma D, Pandey M (2011) Nanotechnology: prospects of agricultural advancement. Nano Vision 1:88–100

    Google Scholar 

  • Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112

    Article  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joo H, Cheng IE (2006) Nanotechnology for environmental remediation. Springer, New York, USA

    Google Scholar 

  • Joshi P, Bonde S, Gaikwad S, Gade A, Abd-Elsalam KA, Rai M (2013) Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and its efficacy against bacteria and Malassezia furfur. J Bionanosci 7:1–5

    Article  CAS  Google Scholar 

  • Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M (2004) Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J Gen Plant Pathol 70:207–211

    Article  CAS  Google Scholar 

  • Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):e84693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasprowicz MJ, Kozio M, Gorczyca A (2010) The effect of silver nanoparticles on hytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 7:133–137

    Article  CAS  Google Scholar 

  • Khan RH, Yasmeen K, Kishor K (2014) Biological synthesis and characterization of silver nanoparticles from Fusarium oxysporum. Der Pharm Sin 5(5):112–117

    CAS  Google Scholar 

  • Khaydarov RR, Khaydarov RA, Evgrafova S, Estrin Y (2011) Using silver nanoparticles as an antimicrobial agent. NATO Sci Peace Security Ser A169–177

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  PubMed  CAS  Google Scholar 

  • Khosravi A, Shojaosadati SA (2009) Evaluation of silver nanoparticles produced by fungus Fusarium oxysporum. Int J Nanotechnol 6:973–983

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    PubMed  CAS  Google Scholar 

  • Korbekandia H, Asharia Z, Iravanib S, Abbasic S (2013) Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res 12(3):289–298

    Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Biol 2:124

    Article  Google Scholar 

  • Kumar RR, Priyadharsani PK, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamari. J Nanopart Res 14:860–868

    Article  CAS  Google Scholar 

  • Lee JY, Choi W, Han JH, Strano MS (2010) Coherence resonance in a single-walled carbon nanotube ion channel. Science 329:1320–1324

    Article  PubMed  CAS  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  PubMed  CAS  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y et al (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 20:1–8

    CAS  Google Scholar 

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and effecient release of bifenthrin. Pest Manag Sci 64:808–812

    Article  PubMed  CAS  Google Scholar 

  • Longoria EC, Nestor ARV, Borja MA (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83:42–48

    Article  CAS  Google Scholar 

  • Lu YC, Xu Z, Gasteiger HA, Chen S, Schifferli KH, Horn YS (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. J Am Chem Soc 132(35):12170–12171

    Article  PubMed  CAS  Google Scholar 

  • Lyons K, Scrinis G (2009) Under the regulatory radar? Nanotechnologies and their impacts for rural Australia. In: Merlan E, Raftery D (eds) Tracking rural change: community, policy and technology in Austalia. ANU Press, Abilene, pp 151–171

    Google Scholar 

  • Ma AM, Martınez ESM, Arroyo LO, Portillo GC, Espındola ES (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloeosporioides. J Nanopart Res 13:2525–2532

    Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2013) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    Article  CAS  Google Scholar 

  • Manceau A, Nagy K, Marcus M, Lanson M, Geoffroy N, Jacquet T et al (2008) Formation of metallic copper nanoparticles at the soil-root Interface. Environ Sci Technol 42:1766–1772

    Article  PubMed  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49

    CAS  Google Scholar 

  • McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F et al (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551–556

    Article  CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. J Minerals Met Mater Soc 62:45–48

    Article  CAS  Google Scholar 

  • Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11(1):243–248

    Article  PubMed  CAS  Google Scholar 

  • Mohammadian A, Shojaosadati, Rezaee MH (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci Iran 14:323–326

    CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles, technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40(19):3585–3588

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19:075–103

    Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Naqvi AA (2010) A production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi KD (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–156

    Article  CAS  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068

    Article  PubMed  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Navazi ZR, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iran J Biotechnol 8:56–61

    CAS  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2010) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF, the process and optimization. J Nanopart Res 13:3129–3137

    Article  CAS  Google Scholar 

  • Ninganagouda S, Rathod V, Singh D (2014) Characterization and biosynthesis of silver nanoparticles using a fungus Aspergillus niger. Int Lett Nat Sci 10:49–57

    Article  Google Scholar 

  • Nithya R, Ragunathan R (2004) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Biostruct 4:623–629

    Google Scholar 

  • Nohani E, Alimakan E (2015) The effect of nanoparticles on geotechnical properties of clay. Int J Life Sci 9(4):25–27

    Google Scholar 

  • Oancea S, Padureanu S, Oancea AV (2009) Growth dynamics of corn plants during anionic clays action. Lucrari Stiintifice Ser Agron 52:212–217

    Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and AgSiO2 nanoparticles by irradiation and their antibacterial and antifungal efficiency against Salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275:228–233

    Article  CAS  Google Scholar 

  • Owaid MN, Raman J, Lakshmanan H, Al-Saeedi SSS, Sabaratnam V, Abed IA (2015) Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater Lett 153:186–190

    Article  CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases plant. Pathol J 22(3):295–302

    Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy, 73(2):374–381

    Article  CAS  Google Scholar 

  • Pimprikar PS. Pimprikar PS1, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B: Biointerfaces, 74(1), 309 https://doi.org/10.1016/j.colsurfb

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability. Springer Nature, Singapore Pte Ltd, Singapore

    Book  Google Scholar 

  • Prasad R, Bagde US, Varma A (2012) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11(73):13746–13752

    Article  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen Q (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  PubMed  CAS  Google Scholar 

  • Rajput S, Werezuk R, Lange RM, McDermott MT (2016) Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir 32:8688–8697

    Article  PubMed  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 93:310

    Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  PubMed  CAS  Google Scholar 

  • Ruffolo SA, Russa MFL, Malagodi M, Oliviero RC, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100:829–834

    Article  CAS  Google Scholar 

  • Sadrieh N (2005) FDA considerations for regulation of nanomaterial containing products. PhD thesis. Office of Pharmaceutical Science, CDER, FDA

    Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci 26:219–224

    Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  PubMed  CAS  Google Scholar 

  • Sanghi R, Sanghi R, Verma PA (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891

    Article  CAS  Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B Biointerfaces 77:214–218

    Article  PubMed  CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer-Verlag, Dordrecht, Netherlands, pp 1–32

    Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sastry RK, Rashmi HB, Rao NH, Ilyas SM (2010) Integrating nanotechnology (NT) into agri-food systems research in India: a conceptual framework. Technol Forecast Soc Chang 77:639–648

    Article  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:012–035

    Google Scholar 

  • Scott N, Chen H (2003) Nanoscale science and engineering for agriculture and food systems. National Planning Workshop. Washington, DC 18–19

    Google Scholar 

  • Scott N, Chen H (2012) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 8:340–343. https://doi.org/10.1089/ind.2012.1549

    Article  Google Scholar 

  • Sen K, Sinha P, Lahiri S (2011) Time dependent formation of gold nanoparticles in yeast cells: a comparative study. Biochem Eng J 55:1–6

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1):143–148

    Article  CAS  Google Scholar 

  • Shahi SK, Shahi SK, Patra M (2003) Biotechnological aspect for the synthesis of bioactive nanoparticle and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509

    Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92

    Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium Chrysogenum. Int J Nanosci Nanotechnol 7(2):102–105

    Google Scholar 

  • Shelar GB, Chavan AM (2014) Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. Int J Biomed Adv Res 05(07):348–351

    Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519(3):1156–1159

    Article  CAS  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. https://doi.org/10.1155/2014/408021

  • Singha A, Singha NB, Hussaina I, Singha H, Singh SC (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Intern J Pharma Sci Invent 4(8):25–40

    Google Scholar 

  • Stan HJ, Linkerhagner M (1996) Pesticide residue analysis in foodstuffs applying capillary gas chromatography with atomic emission detection state-of-the-art use of modified multimethod S19 of the Deutsche for schungsgemeinschaft and automated large-volume injection with programmed-temperature vaporization and solvent venting. J Chromatogr A 750:369–390

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK (2014) Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J Pharm Tech Res 6(5):1718–1723

    CAS  Google Scholar 

  • Sujatha S, Tamilselvi S, Subha K, Panneerselvam A (2013) Studies on biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. Int J Curr Microbiol App Sci 2(12):605–614

    Google Scholar 

  • Suman, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Tarafdar M, Gupta A, Turel O (2013) The dark side of information technology use. Inf Syst 23:269–275

    Article  Google Scholar 

  • Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol 1–5. Article ID 515091. http://doi.org/10.5402/2013/515091

    Google Scholar 

  • Torney F, Trewyn BG, Lin SY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insciences J 1(1):65–79

    Article  CAS  Google Scholar 

  • Vala AK (2014) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34(1):194–197

    Article  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  PubMed  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59

    Article  PubMed  CAS  Google Scholar 

  • Vinod VTP, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB (2010) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B 83:291–298

    Article  CAS  Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang AJY, Dong XY et al (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80(3):1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Waychunas A, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7(4):409–433

    Article  CAS  Google Scholar 

  • Wilson A, Nguyen H, Adrian ST, Milev GS, Kannangara K, Volk GQH, Lu M (2008) Nanomaterials in soils. Geoderma 146(2):291–302

    Article  CAS  Google Scholar 

  • Woo KS, Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11(10):1849–1852

    Article  CAS  Google Scholar 

  • Yehia RS, Sheikh HA (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30:2797–2803

    Article  PubMed  CAS  Google Scholar 

  • Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147

    Article  CAS  Google Scholar 

  • Yu B, Zeng J, Gong L, Zhang M, Zhang L, Xi C (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza MLZ, Silva EM, Cortez EG, Tostado EC, Guerrero DQ (2011) Optimization of nano capsules preparation, by the emulsification-diffusion method for food application. LWT Food Sci Technol 44:1362–1368

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zeng J, Zheng Y, Rycenga M, Tao J, Li ZY, Zhang Q, Zhu Y, Xia Y (2010) Controlling the shapes of silver nanocrystals with different capping agents. J Am. Chem Soc 132(25):8552–8553

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 105:83–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deka, D., Rabha, J., Jha, D.K. (2018). Application of Myconanotechnology in the Sustainable Management of Crop Production System. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_11

Download citation

Publish with us

Policies and ethics