Skip to main content

Bioremediation Applications with Fungi

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Industrial wastewaters such as olive oil mill wastewater (OOMW) and alcohol factory wastewater (vinasse) with high polluting characteristics affect the ecosystem seriously. The environmental impact of these wastewaters is rather severe due to their organic matter content and dark color. Therefore, it is illegal to dispose these wastewaters directly into the environment. In addition of wastewater treatments, decolorization of Kraft mills is one of the serious problems in pulp and paper industries because of their high color contents. The discharges of Kraft mills present a threat for environment and especially surface waters. These colored effluents contain serious amounts of chlorinated and oxidized lignin compounds. Remediation of this kind of wastewaters by conventional treatment methods has difficult and challenging processes. As a solution, the fungi have been chosen for bioremediation of wastewaters as efficient biological systems as they are able to remove the color and threatful organic content. Mycoremediation is an effective and ecofriendly method for the bioremediation of this type of wastewaters. This method has several advantages over chemical or physical remediation. Besides, fungal enzymes have a great potential for detoxifying and screening most of the environmental pollutants. In the last decade, fungal enzymes have a new application area on sensor technology. Biosensors are able to utilize fungal enzymes including an electrode that may be used for the detection of pollutants such as phenolic compounds. The objective of this chapter is to summarize recent developments in mycoremediation of wastewaters, especially OOMW and vinasse. Here, the role of biotechnologically important fungi such as yeast, molds, and white rot fungi in the mycoremediation of wastewaters is reviewed. The various mycoremediation methods for effective bioremediation and recent developments for fungal enzymes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggelis G, Iconomou D, Christou M, Bokas D, Kotzailias S, Christou G, Tsagou V, Papanikolaou S (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37:3897–3904

    Article  PubMed  CAS  Google Scholar 

  • Aguiar MM, Ferreira LFR, Monteiro RTR (2010) Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Braz Arch Biol Techn 53:1245–1254

    Article  Google Scholar 

  • Alaoui SM, Ghanam J, Merzouki M, Penninckx MJ, Benlemlih M (2013) Immobilisation of Pycnoporus coccineus laccase in Ca alginate beads for use in the degradation of aromatic compounds present in olive oil mill wastewater. J Biotechnol Lett 4:91–94

    Google Scholar 

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287

    Article  PubMed  CAS  Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi, Fungi as Bioremediators, soil biology, vol 32. Springer, Berlin

    Google Scholar 

  • Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric materials. Trends Biotechnol 17(10):409–421

    Google Scholar 

  • Aoshima I, Tozawa Y, Ohmomo S, Ueda K (1985) Research on the decolorization of melanoidin by microorganisms.1. Production of decolorizing cctivity for molasses pigment by Coriolus versicolor Ps4a. Agr Biol Chem Tokyo 49:2041–2045

    CAS  Google Scholar 

  • Apohan E, Yesilada O (2011) Enhancement of laccase production of pre-grown fungal pellets in wastewater of olive oil mills. Fresenius Environ Bull 20:1216–1224

    CAS  Google Scholar 

  • Apohan E, Yesilada O (2017) Production of laccase in olive oil mill wastewater and vinasse by immobilized Trametes versicolor and Trametes trogii with different supports. Fresenius Environ Bull 26:4261–4267

    CAS  Google Scholar 

  • Arcand L, Archibald FS (1991) Direct dechlorination of chlorophenolic compound by laccase from Trametes (Coriolus) versicolor. Enzyme Microb Technol 13:194–203

    Google Scholar 

  • Atlow SC, Banadonna-Aparo L, Klibanow AM (1984) Dephenolization of industrial wastewaters catalysed by polyphenol oxidase. Biotechnol Bioeng 26:599–603

    Article  PubMed  CAS  Google Scholar 

  • Aviani I, Raviv M, Hadar Y, Saadi I, Laor Y (2009) Original and residual phytotoxicity of olive mill wastewater revealed by fractionations before and after incubation with Pleurotus ostreatus. J Agr Food Chem 57:11254–11260

    Article  CAS  Google Scholar 

  • Ayed L, Assas N, Sayadi S, Hamdi M (2005) Involvement of lignin peroxidase in the decolourization of black olive mill wastewaters by Geotrichum candidum. Lett Appl Microbiol 40:7–11

    Article  PubMed  CAS  Google Scholar 

  • Aytar P, Gedikli S, Celikdemir M, Uzuner S, Farizoglu B, Sam M, Cabuk A, Saglam N (2011) Dephenolization of olive oil mill wastewater by pellets of some white rot fungi. Hacet J Biol Chem 39:379–390

    Google Scholar 

  • Baldrian P (2006) Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  PubMed  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Benito GG, Miranda MP, delosSantos DR (1997) Decolorization of wastewater from an alcoholic fermentation process with Trametes versicolor. Bioresour Technol 61:33–37

    Article  CAS  Google Scholar 

  • Blanquez P, Caminal G, Sarra M, Vicent MT, Gabarrell X (2002) Olive oil mill waste waters decoloration and detoxification in a bioreactor by the white rot fungus Phanerochaete flavido-alba. Biotechnol Prog 18:660–662

    Article  PubMed  CAS  Google Scholar 

  • Bonnarme P, Jeffries TW (1989) Mn (II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin degrading white rot fungi. Appl Environ Microbiol 56:210–217

    Google Scholar 

  • Boran F, Yesilada O (2011) Enhanced production of laccase by fungi under solid substrate fermentation condition. Bioresources 6:4404–4416

    CAS  Google Scholar 

  • Borja R, Martin A, Banks CJ, Alonso V, Chica A (1995) A kinetic-study of anaerobic-digestion of olive mill waste-water at mesophilic and thermophilic temperatures. Environ Pollut 88:13–18

    Article  PubMed  CAS  Google Scholar 

  • Casa R, D’Annibale A, Pieruccetti F, Stazi SR, Sermanni GG, Lo Cascio B (2003) Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50:959–966

    Article  PubMed  CAS  Google Scholar 

  • Chairattanamanokorn P, Imai T, Kondo R, Sekine M, Higuchi T, Ukita M (2005) Decolorization of alcohol distillery wastewater by thermotolerant white rot fungi. Appl Biochem Micro 41:583–588

    Article  CAS  Google Scholar 

  • Chakroun H, Sayadi S, Mechichi T, Dhouib A (2009) High level of laccases production by Trametes trogii culture on olive mill wastewater-based media, application in textile dye decolorization. J Chem Technol Biot 84:1527–1532

    Article  CAS  Google Scholar 

  • Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol 19:171–177

    Article  CAS  Google Scholar 

  • Claus H, Filip Z (1988) Behavior of phenoloxidases in the presence of clays and other soil-related adsorbents. Appl Microbiol Biotechnol 28:506–511

    Article  CAS  Google Scholar 

  • D’Annibale A, Crestini C, Vinciguerra V, Sermanni GG (1998) The biodegradation of recalcitrant effluents from an olive mill by a white-rot fungus. J Biotechnol 61:209–218

    Article  PubMed  Google Scholar 

  • D’Annibale A, Stazi SR, Vinciguerra V, Di Mattia E, Sermanni GG (1999) Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem 34:697–706

    Article  Google Scholar 

  • D’Annibale A, Stazi SR, Vinciguerra V, Sermanni GG (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77:265–273

    Article  PubMed  Google Scholar 

  • D’Annibale A, Ricci M, Quaratino D, Federici F, Fenice M (2004a) Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol 155:596–603

    Article  PubMed  CAS  Google Scholar 

  • D’Annibale A, Casa R, Pieruccetti F, Ricci M, Marabottini R (2004b) Lentinula edodes removes phenols from olive-mill wastewater: impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 54:887–894

    Article  PubMed  CAS  Google Scholar 

  • D’Annibale A, Quaratino D, Federici F, Fenice M (2006) Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus. Biochem Eng J 29:243–249

    Article  CAS  Google Scholar 

  • Dahiya J, Singh D, Nigam P (2001) Decolourisation of synthetic and spentwash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour Technol 78:95–98

    Article  PubMed  CAS  Google Scholar 

  • De la Rubia T, Lucas M, Martinez J (2008) Controversial role of fungal laccases in decreasing the antibacterial effect of olive mill waste-waters. Bioresour Technol 99:1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Dehorter B, Blondeau R (1993) Isolation of an extracellular Mn-dependent enzyme mineralizing melanoidins from the white-rot fungus Trametes versicolor. FEMS Microbiol Lett 109:117–122

    Article  CAS  Google Scholar 

  • Desorets CG, Dass SB, Reddy CA, Grethlein HE (1990) Protease-mediated degradation of lignin peroxidase in liquid cultures of Phanerochate chrysosporium. Appl Environ Microb 56:3429–3434

    Google Scholar 

  • Dhouib A, Aloui F, Hamad N, Sayadi S (2005) Complete detoxification of olive mill wastewater by integrated treatment using the white rot fungus Phanerochaete chrysosporium followed by anaerobic digestion and ultrafiltration. Biotechnology 4:153–162

    Article  CAS  Google Scholar 

  • Dhouib A, Ellouz M, Aloui F, Sayadi S (2006) Effect of bioaugmentation of activated sludge with white-rot fungi on olive mill wastewater detoxification. Lett Appl Microbiol 42:405–411

    Article  PubMed  CAS  Google Scholar 

  • Dias AA, Bezerra RM, Pereira AN (2004) Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater. Bioresour Technol 92:7–13

    Article  PubMed  CAS  Google Scholar 

  • Dlamini AM, Peiris PS (1997) Biopolymer production by a Klebsiella oxytoca isolate using whey as fermentation substrate. Biotechnol Lett 19:127–130

    Article  CAS  Google Scholar 

  • Elisashvili VI (1993) Physiological regulation of ligninolytic activity in higher basidium fungi. Microbiology 62:480–487

    Google Scholar 

  • Ergul FE, Sargin S, Ongen G, Sukan FV (2009) Dephenolisation of olive mill wastewater using adapted Trametes versicolor. Int Biodeter Biodegr 63:1–6

    Article  CAS  Google Scholar 

  • Espana-Gamboa E, Vicent T, Font X, Mijangos-Cortes J, Canto-Canche B, Alzate-Gaviria L (2015) Phenol and color removal in hydrous ethanol vinasse in an air-pulsed bioreactor using Trametes versicolor. J Biochem Technol 6:982–986

    Google Scholar 

  • Espana-Gamboa E, Vicent T, Font X, Dominguez-Maldonado J, Canto-Canche B, Alzate-Gaviria L (2017) Pretreatment of vinasse from the sugar refinery industry under non-sterile conditions by Trametes versicolor in a fluidized bed bioreactor and its effect when coupled to an UASB reactor. J Biol Eng 6:1–11

    Google Scholar 

  • Fahy V, FitzGibbon FJ, McMullan G, Singh D, Marchant R (1997) Decolourisation of molasses spent wash by Phanerochaete chrysosporium. Biotechnol Lett 19:97–99

    Article  CAS  Google Scholar 

  • Fenice M, Sermanni GG, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85

    Article  PubMed  CAS  Google Scholar 

  • Ferreira LF, Aguiar M, Pompeu G, Messias TG, Monteiro RR (2010) Selection of vinasse degrading microorganisms. World J Microb Biot 26:1613–1621

    Article  CAS  Google Scholar 

  • Ferreira LFR, Aguiar MM, Messias TG, Pompeu GB, Lopez AMQ, Silva DP, Monteiro RT (2011) Evaluation of sugar-cane vinasse treated with Pleurotus sajor-caju utilizing aquatic organisms as toxicological indicators. Ecotox Environ Safe 74:132–137

    Article  CAS  Google Scholar 

  • FitzGibbon F, Singh D, McMullan G, Marchant R (1998) The effect of phenolic acids and molasses spent wash concentration on distillery wastewater remediation by fungi. Process Biochem 33:799–803

    Article  CAS  Google Scholar 

  • Fountoulakis MS, Dokianakis SN, Kornaros ME, Aggelis GG, Lyberatos G (2002) Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res 36:4735–4744

    Article  PubMed  CAS  Google Scholar 

  • Fraij A, Massadeh MI (2015) Use of Pleurotus sajor-caju for the biotreatment of olive mill wastewater. Rom Biotechnol Lett 20:10611–10617

    CAS  Google Scholar 

  • Gersh S, Dawadi RP, Arad SM (2000) Chemical modifications of biopolymers: quatemization of the extracellular polysaccharide of the red microalga Porphyridium sp. Carbohydr Polym 63:75–80

    Article  Google Scholar 

  • Glen J, Akileswaran L, Gold M (1986) Mn (II) oxidation is the principal function of the extracellular Mn-peroxidase from Penicillium chrysosporium. Arch Biochem Biophy 251:688–696

    Article  Google Scholar 

  • Gold MH, Glenn KJ (1988) Manganese peroxidase from Phanerochaete chrysosporium. Methods Enzymol 161:258–270

    Article  CAS  Google Scholar 

  • Gonzalez T, Terron MC, Yague S, Zapico E, Galletti GC, Gonzalez AE (2000) Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp I-62 (CECT 20197). Rapid Commun Mass Sp 14:1417–1424

    Article  CAS  Google Scholar 

  • Gonzalez T, Terron MC, Yague S, Junca H, Carbajo JM, Zapico EJ, Silva R, Arana-Cuenca A, Tellez A, Gonzale AE (2008) Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp I-62. Res Microbiol 159:103–109

    Article  PubMed  CAS  Google Scholar 

  • Hamdi M, Garcia JL (1993) Anaerobic-digestion of olive mill wastewaters after detoxification by prior culture of Aspergillus niger. Process Biochem 28:55–159

    Article  Google Scholar 

  • Hamman S (2004) Bioremediation capabilities of white rot fungi. Biodegradation 52:1–5

    Google Scholar 

  • Higuchi T (1987) Catobolic pathways and role of ligninase for degredation of lignin substructure model compounds by white rot fungi. Wood Res 73:58–81

    Google Scholar 

  • Jafari M, Danesh YR, Ghoosta Y (2013) Molecular techniques in fungal bioremediation. Fungi Bioremediators 32:453–465

    Article  CAS  Google Scholar 

  • Jager A, Croan S, Kirk K (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microb 50:1274–1278

    CAS  Google Scholar 

  • Jaouani A, Guillen F, Penninckx MJ, Martinez AT, Martinez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb Technol 36:478–486

    Article  CAS  Google Scholar 

  • Jaouani A, Tabka MG, Penninckx MJ (2006) Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere 62:1421–1430

    Article  PubMed  CAS  Google Scholar 

  • Justino CI, Duarte K, Loureiro F, Pereira R, Antunes SC, Marques SM, Goncalves F, Rocha-Santos TAP, Freitas AC (2009) Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation. J Hazard Mater 172:560–1572

    Article  CAS  Google Scholar 

  • Kahraman S, Yesilada O (2001) Industrial and agricultural wastes as substrates for laccase production by white-rot fungi. Folia Microbiol 46:33–136

    Article  Google Scholar 

  • Kahraman S, Yesilada O (2003) Decolorization and bioremediation of molasses wastewater by white-rot fungi in a semi-solid-state condition. Folia Microbiol 48:525–528

    Article  CAS  Google Scholar 

  • Karam J, Nicelli JA (1997) Potential applications of enzymes in waste treatment. J Chem Tech Biotechnol 69:141–153

    Article  CAS  Google Scholar 

  • Kirkpatrick N, Reid ID, Ziomek E, Paice MG (1990) Biological bleaching of hardwood kraft pulp using Trametes (Coriolus) versicolor, immobilized in polyurethane foam. Appl. Microbiol Biotechnol 33:105–108

    Article  CAS  Google Scholar 

  • Kissi M, Mountadar M, Assobhei O, Gargiulo E, Palmieri G, Giardina P, Sannia G (2001) Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Appl Microbiol Biot 57:221–226

    Article  CAS  Google Scholar 

  • Klibanov AM, Alberti BN, Morris ED, Felshin LM (1980) Enzymatic removal of toxic phenols and anilines from wastewaters. J Appl Biochem 2:414–421

    CAS  Google Scholar 

  • Klibanov AM, Tu TM, Scott KP (1983) Peroxidase catalysed removal of phenols from coal conversion wastewater. Science 221:259–261

    Article  PubMed  CAS  Google Scholar 

  • Klibanov AM, Shin S, Luque S (2000) Improving lipase enantioselectivity in organic solvents by forming substrate salts with chiral agents. Biotechnol Bioeng 69:577–583

    Article  PubMed  Google Scholar 

  • Koutrotsios G, Zervakis GI (2014) Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi. BioMed Research International 1–15

    Article  Google Scholar 

  • Koutrotsios G, Larou E, Mountzouris KC, Zervakis GI (2016) Detoxification of olive mill wastewater and bioconversion of olive crop residues into high-value-added biomass by the choice edible mushroom Hericium erinaceus. Appl Biochem Biotech 180:195–209

    Article  CAS  Google Scholar 

  • Kumar V, Wati L, Nigam P, Banat IM, Yadav BS, Singh D, Marchant R (1998) Decolorization and biodegradation of anaerobically digested sugarcane molasses spent wash effluent from biomethanation plants by white-rot fungi. Process Biochem 33:83–88

    Article  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Gold MH (1983) Seperation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of P. chrysosporium. Fed Eur Bochem Soc 169:247–250

    Article  Google Scholar 

  • Lakhtar H, Ismaili-Alaoui M, Philippoussis A, Perraud-Gaime I, Roussos S (2010) Screening of strains of Lentinula edodes grown on model olive mill wastewater in solid and liquid state culture for polyphenol biodegradation. Int Biodeter Biodegr 64:167–172

    Article  CAS  Google Scholar 

  • Leisola MS, Fiechter A (1985) Ligninase production in agitated conditions by Phanerochaete chrysosporium. FEMS Microbiol Lett 29(1–2):33–36

    Article  CAS  Google Scholar 

  • Leisola MS, Kozulic B, Meussdoerffer F (1987) Homolog among multiple extracellular peroxidases from P. chrysosporium. J Biol Chem 262:419–424

    PubMed  CAS  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22

    Google Scholar 

  • Mann J, Markham JL, Peiris P, Nair N, Spooner-Hart RN, Holford P (2010) Screening and selection of fungi for bioremediation of olive mill wastewater. World J Microb Biot 26:567–571

    Article  CAS  Google Scholar 

  • Mann J, Markham JL, Peiris P, Spooner-Hart RN, Holford P, Nair NG (2015) Use of olive mill wastewater as a suitable substrate for the production of laccase by Cerrena consors. Int Biodeter Biodegr 99:138–145

    Article  CAS  Google Scholar 

  • Martirani L, Giardina P, Marzullo L, Sannia G (1996) Reduction of phenol content and toxicity in olive oil mill waste waters with the ligninolytic fungus Pleurotus ostreatus. Water Res 30:1914–1918

    Article  CAS  Google Scholar 

  • Mason HS, Fowlks WB, Peterson EW (1955) Oxygen transfer and electron transport by the phenolase complex. J Am Chem Soc 77:2914–2915

    Article  CAS  Google Scholar 

  • Massadeh MI, Modallal N (2008) Ethanol production from olive mill wastewater (OMW) pretreated with Pleurotus sajor-caju. Energ Fuel 22:150–154

    Article  CAS  Google Scholar 

  • Matos AJFS, Bezerra RMF, Dias A (2007) Screening of fungal isolates and properties of Ganoderma applanatum intended for olive mill wastewater decolourization and dephenolization. Lett Appl Microbiol 45:270–275

    Article  PubMed  CAS  Google Scholar 

  • Miyata N, Mori T, Iwahori K, Fujita M (2000) Microbial decolorization of melanoidin-containing wastewaters: combined use of activated sludge and the fungus Coriolus hirsutus. J Biosci Bioeng 89:145–150

    Article  PubMed  CAS  Google Scholar 

  • Münzberg J, Rau U, Wagner F (1995) Investigations on the regioselective hydrolysis of a branched p-l,3-glucan. Carbohy Polym 27:271–276

    Article  Google Scholar 

  • Neifar M, Jaouani A, Martinez MJ, Penninckx MJ (2012) Comparative study of olive oil mill wastewater treatment using free and immobilized Coriolopsis polyzona and Pycnoporus coccineus. J Microbiol 50:746–753

    Article  PubMed  CAS  Google Scholar 

  • Nicelli JA, Al-Kassim BJK, Taylor KE (1993) Wastewater treatment by enzyme catalysed polymerization and precipitation. Biodeterior Abstr 7(1):1–8

    Google Scholar 

  • Nogueira V, Lopes I, Freitas AC, Rocha-Santos TAP, Goncalves F, Duarte AC, Pereira R (2015) Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials. Ecotox Environ Safe 115:234–242

    Article  CAS  Google Scholar 

  • Ntougias S, Baldrian P, Ehaliotis C, Nerud F, Antoniou T, Merhautova V, Zervakis GI (2012) Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus. Chemosphere 88:620–626

    Article  PubMed  CAS  Google Scholar 

  • Ohmomo S, Itoh N, Watanabe Y, Kaneko Y, Tozawa Y, Ueda K (1985) Research on the decolorization of melanoidin by microorganisms. Part 4. Continuous decolorization of molasses waste-water with mycelia of Coriolus versicolor Ps4a. Agr Biol Chem Tokyo 49:2551–2555

    CAS  Google Scholar 

  • Olivieri G, Russo ME, Giardina P, Marzocchella A, Sannia G, Salatino P (2012) Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus. J Ind Microbiol Biot 39:719–729

    Article  CAS  Google Scholar 

  • Palmore GTR, Kim H (1999) Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J Electroanal Chem 464:110–117

    Article  CAS  Google Scholar 

  • Paszczynski A, Huynh V, Crawford R (1985) Comparisson of ligninase-I and peroxidase-M2 from the white rot fungus Phanerochaete chrysosporium. Arch Biochem Biophy 244:750–765

    Article  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Jeffries W (1993) Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium. Appl Biochem Biotech 39(40):227–238

    Article  Google Scholar 

  • Perez J, de la Rubia T, Ben Hamman O, Martinez J (1998) Phanerochaete flavido-alba laccase induction and modification of manganese peroxidase isoenzyme pattern in decolorized olive oil mill wastewaters. Appl Environ Microb 64:2726–2729

    CAS  Google Scholar 

  • Peruski AH, Peruski LF (2003) Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn Lab Immunol 10(4):506–513

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biot 57:20–33

    Article  CAS  Google Scholar 

  • Potentini MF, Rodriguez-Malaver AJ (2006) Vinasse biodegradation by Phanerochaete chrysosporium. J Environ Biol 27:661–665

    PubMed  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability. Springer Nature Singapore Pte Ltd., Singapore

    Book  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghukumar C, Mohandass C, Kamat S, Shailaja MS (2004) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzyme Microb Technol 35:197–202

    Article  CAS  Google Scholar 

  • Rogalski J, Lundell T, Leonowicz A, Hatakka A (1991) Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains of Trametes versicolor depending on culture conditions. Acta Microbiol Pol 40:221–234

    CAS  Google Scholar 

  • Ruiz JC, de la Rubia T, Perez J, Lopez JM (2002) Effect of olive oil mill wastewater on extracellular ligninolytic enzymes produced by Phanerochaete flavido-alba. FEMS Microbiol Lett 212:41–45

    Article  PubMed  CAS  Google Scholar 

  • Saglam N, Say R, Denizli A, Patir S, Arica Y (1999) Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem 34:725–730

    Article  CAS  Google Scholar 

  • Salman M, Abu-Khalaf N, Rumaileh AB, Jawabreh M, Abuamsha R (2014) Detoxification of olive mill wastewater using the white rot fungus Phanerochaete chrysosporium. Int J Environ Sust 3:1–6

    Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  PubMed  CAS  Google Scholar 

  • Sanjust E, Pompei R, Rescigno A, Rinaldi A, Ballero M (1991) Olive milling wastewater as a medium for growth of 4 Pleurotus species. Appl Biochem Biotech 31:223–235

    Article  CAS  Google Scholar 

  • Saoji SA, Khan Z (2015) Enzymatic clarification and fading of synthetic and real melanoidins by laccase and peroxidases in submerged fermentation by Phanerochaete chrysosporium BW808 (MTCC 787). Arch Appl Sci Res 7:59–67

    CAS  Google Scholar 

  • Sartori BS, Ferreira RFL, Messia GT, Souza G, Pompeu BG, Monteiro RTR (2015) Pleurotus biomass production on vinasse and its potential use for aquaculture feed. Mycology 6:28–34

    Article  PubMed  CAS  Google Scholar 

  • Sayadi S, Ellouz R (1992) Decolourization of olive mill wastewaters by the white rot fungus Phanerochaete chrysosporium – involvement of the lignin degrading system. Appl Microbiol Biot 37:813–817

    Article  CAS  Google Scholar 

  • Sayadi S, Ellouz R (1995) Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl Environ Microb 61:1098–1103

    CAS  Google Scholar 

  • Sayadi S, Zorgani F, Ellouz R (1996) Decolorization of olive mill wastewaters by free and immobilized Phanerochaete chrysosporium cultures- effect of the high-molecular-weight polyphenols. Appl Biochem Biot 56:265–276

    Article  CAS  Google Scholar 

  • Sayadi S, Allouche N, Jaoua M, Aloui F (2000) Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochem 35:725–735

    Article  CAS  Google Scholar 

  • Sheldon RA, van Rantwijk F (2004) Biocatalysis for sustainable organic synthesis. Austr J Chem 57:281–289

    Article  CAS  Google Scholar 

  • Skvortsov IM, Ignatov VV (1998) Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microbiol Lett 165:223–229

    Article  PubMed  CAS  Google Scholar 

  • Soares GMB, Costa-Ferreira M, Pessoa de Amorim MT (2001) Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresour Technol 79:171–177

    Article  PubMed  CAS  Google Scholar 

  • Strong JP (2011) Improved laccase production by Trametes pubescens MB89 in distillery wastewaters. Enzym Res 2011:379176:1–8

    Article  CAS  Google Scholar 

  • Strong PJ, Burgess JE (2007) Bioremediation of a wine distillery wastewater using white rot fungi and the subsequent production of laccase. Water Sci Technol 56:179–186

    Article  PubMed  CAS  Google Scholar 

  • Strong PJ, Burgess JE (2008) Fungal and enzymatic remediation of a wine lees and five wine-related distillery wastewaters. Bioresour Technol 99:6134–6142

    Article  PubMed  CAS  Google Scholar 

  • Sun WQ, Payne GF (1996) Tyrosinase-containing chitosan gels: a combined catalyst and sorbent for selective phenol removal. Biotechnol Bioeng 51:79–86

    Article  PubMed  CAS  Google Scholar 

  • Sun WQ, Payne GF, Moas M, Chu JH, Wallace KK (1992) Tyrosinase reaction/chitosan adsorption for removing phenols from wastewater. Biotechnol Progress 8:179–186

    Article  CAS  Google Scholar 

  • Sun W, Xu MY, Xia CY, Li AH, Sun GP (2013) Enhanced production of laccase by Coriolus hirsutus using molasses distillery wastewater. Front Env Sci Eng 7:200–210

    Article  CAS  Google Scholar 

  • Sutherland TD, Horne I, Weir KM et al (2004) Enzymatic bioremediation: from enzyme discovery to applications. Clin Exp Pharmacol Physiol 31:817–821

    Article  PubMed  CAS  Google Scholar 

  • Tapia-Tussell R, Perez-Brito D, Torres-Calzada C, Cortes-Velazquez A, Alzate-Gaviria L, Chable-Villacis R, Solis-Pereira S (2015) Laccase gene expression and vinasse biodegradation by Trametes hirsuta strain Bm-2. Molecules 20:15147–15157

    Article  PubMed  CAS  Google Scholar 

  • Tapie WA, Prato-García D, Sanchez Guerrero H (2016) Biodegradation of sugarcane vinasses by the white-rot fungi Pleurotus ostreatus in packed bed reactor. Trop Subtrop Agroecosyst 19:145–150

    Google Scholar 

  • Taspinar A, Kolankaya N (1998) Optimization of enzymatic chlorine removal from Kraft pulp. B Environ Contam Tox 61:15–21

    Article  CAS  Google Scholar 

  • Ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413

    Article  PubMed  CAS  Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B-Environ 46:1–15

    Article  CAS  Google Scholar 

  • Tortora GJ, Funke BR, Case CL (1995) Fundamentals of Microbiology. In: Scanlan-Rohrer A (ed) Microbiology an introduction, 5th edition Redwood City, Pearson Education, pp 1–18

    Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol 84:251–257

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta T, Kawai M (1983) Catechol-oxidizing activities of basidiomycetous fungi. Trans Mycol Soc Japan 24:65–77

    CAS  Google Scholar 

  • Vinciguerra V, D’annibale A, Dellemonache G, Sermanni GG (1995) Correlated effects during the bioconversion of waste olive waters by Lentinus-Edodes. Bioresour Technol 51:221–226

    Article  CAS  Google Scholar 

  • Wada S, Ichikawa H, Tatsumi K (1992) Removal of phenols with tyrosinase immobilized on magnetite. Water Sci Technol 26:2057–2059

    Article  CAS  Google Scholar 

  • Wada S, Ichikawa H, Tatsumi K (1993) Removal of phenols from wastewater by soluble and immobilized tyrosinase. Biotechnol Bioeng 42:854–858

    Article  PubMed  CAS  Google Scholar 

  • Wada S, Ichikawa H, Tatsumi K (1995) Removal of phenols and aromatic amines from waste water by a combination treatment with tyrosinase and a coagulant. Biotechnol Bioeng 45:304–309

    Article  PubMed  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1989) Oxidative cleavage of a phenolic diarylpropane lignin model dimmer by manganese peroxidase from P. chrysosporium. Biochemist 28:6017–6023

    Article  CAS  Google Scholar 

  • Watanabe Y, Sugi R, Tanaka Y (1982) Enzymatic decolorization of melanoidin by Coriolus sp. No. 20. Agric Biol Chem 46:1623–1630

    CAS  Google Scholar 

  • Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzyme Microb Technol 38:291–316

    Article  CAS  Google Scholar 

  • Yesilada O, Fiskin K (1995a) Decolorization of alcoholic waste water by white rot fungi Coriolus versicolor, Funalia trogii and Phanerochaete chrysosporium ME446. Turk J Biol 19:191–200

    CAS  Google Scholar 

  • Yesilada O, Fiskin K (1995b) The use of white rot fungi for evaluation and degradation of vinasse. Turk J Biol 19:181–189

    Google Scholar 

  • Yesilada O, Sam M (1998) Toxic effects of biodegraded and detoxified olive oil mill wastewater on the growth of Pseudomonas aeruginosa. Toxicol Environ Chem 65:87–94

    Article  CAS  Google Scholar 

  • Yesilada O, Topcuoglu F, Unyayar A, Unyayar S, Fiskin K, Bozcuk S (1990) The production of abscisic acid (ABA) of some white rot fungi in the incubation medium which consists of Slempe Vinnasse. X. National Biology Congress 18-20 July, 31–37

    Google Scholar 

  • Yesilada O, Unyayar A, Fiskin K (1991) Determination of the laccase and peroxidase enzyme activities of Coriolus versicolor in the vinasse medium. Turk J Biol 15:152–157

    CAS  Google Scholar 

  • Yesilada O, Fiskin K, Yesilada E (1995) The use of white-rot fungus Funalia-Trogii (Malatya) for the decolorization and phenol removal from olive mill waste-water. Environ Technol 16:95–100

    Article  CAS  Google Scholar 

  • Yesilada O, Sik S, Sam M (1998) Biodegradation of olive oil mill wastewater by Coriolus versicolor and Funalia trogii: effects of agitation, initial COD concentration, inoculum size and immobilization. World J Microb Biot 14:37–42

    Article  CAS  Google Scholar 

  • Yesilada E, Ozmen M, Yesilada O (1999) Studies on the toxic and genotoxic effect of olive oil mill wastewater. Fresenius Environ Bull 8:732–739

    CAS  Google Scholar 

  • Yurekli F, Yesilada O, Yurekli M, Topcuoglu SF (1999) Plant growth hormone production from olive oil mill and alcohol factory wastewaters by white rot fungi. World J Microb Biot 15:503–505

    Article  CAS  Google Scholar 

  • Zawistowski J, Biliaderis CG, Eskin NAM (1991) Phenol oxidase. In: Robinson DS, NAM E (eds) Oxidative enzymes in foods. Elsevier Applied Science, London, pp 217–273

    Google Scholar 

  • Zayas T, Romero V, Salgado L, Meraz M, Morales U (2007) Applicability of coagulation/flocculation and electrochemical processes to the purification of biologically treated vinasse effluent. Sep Purif Technol 57:270–276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necdet Saglam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saglam, N. et al. (2018). Bioremediation Applications with Fungi. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_1

Download citation

Publish with us

Policies and ethics