Skip to main content
Book cover

Biogas pp 163–198Cite as

Biogas Production: Microbiological Aspects

  • Chapter
  • First Online:

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 6))

Abstract

Anaerobic digestion is a biochemical process where complex organic matter such as carbohydrates, proteins, and lipids degrade in the absence of oxygen and are converted into methane and carbon dioxide by the action of different groups of microorganisms. It is a sustainable waste management technology, which reduces and stabilizes organic wastes, recycles its nutrient and water content, while producing energy. Biogas reduces the demand for fossil fuels, since it can be used for the production of electric power and heat, or converted into vehicle fuel. Currently, methane production via anaerobic digestion is a steadily increasing industry in Europe and all over the world. This chapter focuses on the anaerobic digestion process and the parameters affecting its performance. It also describes briefly the current technologies for anaerobic digestion. Finally, since the degradation of organic material requires a synchronized action of different groups of microorganisms with different metabolic capabilities, this chapter also presents recent developments in molecular biology techniques as valuable tools to obtain in-depth understanding about this complex microbiological system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AD:

Anaerobic digestion

COD:

Chemical oxygen demand

CSTR:

Continuous stirred-tank reactor

DGGE:

Denaturing gradient gel electrophoresis

FTHFS:

Formyltetrahydrofolate synthetase

HRT:

Hydraulic retention time

IA/TA:

Intermediate alkalinity to total alkalinity

MSW:

Municipal solid waste

OTU:

Operational taxonomic unit

OLR:

Organic loading rate

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription polymerase chain reaction

SSU:

Small-subunit ribosomal RNA

SRT:

Solid retention time

TRFLP:

Terminal restriction fragment length polymorphism

TAN:

Total ammonia nitrogen

USEPA:

United States Environmental Protection Agency

UASB:

Upflow anaerobic sludge blanket

VS/TS:

Volatile solids/total solids

VFA:

Volatile fatty acids

References

  • Abendroth C et al (2015) Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnol Biofuels 8:87

    Article  Google Scholar 

  • Agler MT et al (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78

    Article  Google Scholar 

  • Agneessens LM et al (2017) In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level. Bioresour Technol 233:256–263

    Article  Google Scholar 

  • Ahring BK et al (2003) Biomethanization of the organic fraction of municipal solid wastes. In: Mata-Alvarez J (ed) IWA Publishing, London, UK

    Google Scholar 

  • Ahring BK, Angelidaki I, Johansen K (1992) Anaerobic treatment of manure together with industrial waste. Water Sci Technol 25(7):311–318

    Article  Google Scholar 

  • Akuzawa M et al (2011) Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol 61(3):595–605

    Article  Google Scholar 

  • Alvarez R, Villca S, Liden G (2006) Biogas production from llama and cow manure at high altitude. Biomass Bioenerg 30(1):66–75

    Article  Google Scholar 

  • Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants. Appl Biochem Biotechnol 109(1):95–105

    Article  Google Scholar 

  • Appels L et al (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781

    Article  Google Scholar 

  • Aslanzadeh S et al (2014) Biogas production from N-methylmorpholine-N-oxide (NMMO) pretreated forest residues. Appl Biochem Biotechnol 172(6):2998–3008

    Article  Google Scholar 

  • Bal AS, Dhagat NN (2001) Upflow anaerobic sludge blanket reactor–a review. Indian J Environ Health 43(2):1–82

    Google Scholar 

  • Boe K, Angelidaki I (2006) Online monitoring and control of the biogas process. Technical University of DenmarkDanmarks Tekniske Universitet, Department of Systems BiologyInstitut for Systembiologi

    Google Scholar 

  • Bouallagui H et al (2004) Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochem Eng J 21(2):193–197

    Article  Google Scholar 

  • Bouallagui H et al (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40(3):989–995

    Article  Google Scholar 

  • Braun R, Brachtl E, Grasmug M (2003) Codigestion of proteinaceous industrial waste. Appl Biochem Biotechnol 109(1–3):139–153

    Article  Google Scholar 

  • Bremges A et al (2015) Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. Gigascience 4:33

    Article  Google Scholar 

  • Bryant MP (1979) Microbial methane production—theoretical aspects. J Anim Sci 48(1):193–201

    Article  Google Scholar 

  • Bühligen F et al (2016) A T-RFLP database for the rapid profiling of methanogenic communities in anaerobic digesters. Anaerobe 39:114–116

    Article  Google Scholar 

  • Cai M et al (2016) Metagenomic reconstruction of key anaerobic digestion pathways in municipal sludge and industrial wastewater biogas-producing systems. Front Microbiol 7:778

    Google Scholar 

  • Cecchi F et al (2011) Anaerobic digestion of the organic fraction of municipal solid waste for methane production: research and industrial application, in comprehensive biotechnology. In: Moo-Young M (ed) Elsevier, Waterloo, Canada, pp 463–472

    Chapter  Google Scholar 

  • Chan ECS (2003) Microbial nutrition and basic metabolism. In Handbook of water and wastewater microbiology. Academic Press, London, pp 3–33

    Chapter  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain EnergyRev 16(3):1462–1476

    Article  Google Scholar 

  • Chaudhary BK (2008) Dry continuous anaerobic digestion of municipal solid waste in thermophilic conditions. Master of Engineering thesis: School of Environment, Resources and Development; Asian Institute of Technology. http://faculty.ait.ac.th/visu/public/uploads/Data/AIT-Thesis/Master%20Thesis%20final/Binod.pdf

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99(10):4044–4064

    Article  Google Scholar 

  • Chynoweth DP et al (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5(1):95–111

    Article  Google Scholar 

  • Crolla A et al (2012) Advantages and limitations with using various substrates in manure biogas plants. In: 4th annual canadian farm and food biogas conference and exhibition. London Convention Center, London, Ontario

    Google Scholar 

  • Dai X et al (2016) Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge. Sci Rep 6:28193

    Article  Google Scholar 

  • De Vrieze J et al (2015) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323

    Article  Google Scholar 

  • Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem 40(11):3542–3549

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. In: Deublein D, Steinhauser A (eds) Wiley-VCH Verlag GmbH & Co. KGaA, Mörlenbach, Germany

    Book  Google Scholar 

  • Eikmeyer FG et al (2013) Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms. Biotechnol Biofuels 6(1):49

    Article  Google Scholar 

  • Ellis JT et al (2012) Characterization of a methanogenic community within an algal fed anaerobic digester. ISRN Microbiol 2012:753892

    Google Scholar 

  • Esposito G et al (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Bio/Technol 11(4):325–341

    Article  MathSciNet  Google Scholar 

  • Forgács G et al (2012) Methane production from citrus wastes: process development and cost estimation. J Chem Technol Biotechnol 87(2):250–255

    Article  Google Scholar 

  • Forgács G et al (2013) Pretreatment of chicken feather waste for improved biogas production. Appl Biochem Biotechnol 169(7):2016–2028

    Article  Google Scholar 

  • Frank JA et al (2016) Novel syntrophic populations dominate an ammonia-tolerant methanogenic microbiome. MSystems 1(5)

    Article  Google Scholar 

  • Gagen EJ et al (2010) Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 76(23):7785–7795

    Article  Google Scholar 

  • Ge X, Xu F, Li Y (2016) Solid-state anaerobic digestion of lignocellulosic biomass: recent progress and perspectives. Biores Technol 205:239–249

    Article  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. In: Gerardi MH (ed) Wastewater microbiology series. Wiley Incorporated, Hoboken, NJ

    Google Scholar 

  • Ghosh S et al (2000) Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci Technol 41(3):101–110

    Article  Google Scholar 

  • Godon JJ et al (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63(7):2802–2813

    Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  Google Scholar 

  • Goux X et al (2016) Start-up phase of an anaerobic full-scale farm reactor—appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community. Bioresour Technol 212:217–226

    Article  Google Scholar 

  • Griffin LP (2012) Anaerobic digestion of organic wastes: the impact of operating conditions on hydrolysis efficiency and microbial community composition. Master of Science thesis, Department of Civil and Environmental Engineering; Colorado State University

    Google Scholar 

  • Güllert S et al (2016) Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 9:121

    Article  Google Scholar 

  • Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26(4):389–399

    Article  Google Scholar 

  • Hajji A, Rhachi M (2013) The influence of particle size on the performance of anaerobic digestion of municipal solid waste. Energy Procedia 36:515–520

    Article  Google Scholar 

  • Hanreich A et al (2012) Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Can J Microbiol 58(7):917–922

    Article  Google Scholar 

  • Hartmann H, Ahring B (2006) Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Sci Technol 53:7–22

    Article  Google Scholar 

  • Heyer R et al (2015) Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol 8(5):749–763

    Article  Google Scholar 

  • Heyer R et al (2016) Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnol Biofuels 9:155

    Article  Google Scholar 

  • Huang Y et al (2010) Succession of the bacterial community and dynamics of hydrogen producers in a hydrogen-producing bioreactor. Appl Environ Microbiol 76(10):3387–3390

    Article  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455(7212):481–483

    Article  Google Scholar 

  • Ince O (1998) Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res 32(9):2707–2713

    Article  Google Scholar 

  • Jaenicke S et al (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS ONE 6(1):e14519

    Article  Google Scholar 

  • Jagadabhi PS (2011) Methods to enhance hydrolysis during one and two-stage anaerobic digestion of energy crops and crop residues. http://urn.fi/URN:ISBN:978-951-39-4448-3

  • Jain SR, Mattiasson B (1998) Acclimatization of methanogenic consortia for low pH biomethanation process. Biotech Lett 20(8):771–775

    Article  Google Scholar 

  • Joshua LR et al (2012) Anaerobic digestion technologies for the treatment of municipal solid waste. Int J Environ Waste Manag 9(1–2):100–122

    Google Scholar 

  • Kabir MM, Forgács G, Horváth IS (2013) Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment. Process Biochem 48(4):575–580

    Article  Google Scholar 

  • Kabir MM, Forgács G, Sárvári Horváth I (2015a) Biogas from lignocellulosic materials. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer International Publishing, Cham, pp 207–251

    Google Scholar 

  • Kabir M et al. (2015b) Biogas from wastes: processes and applications. In: Resource recovery to approach zero municipal waste. CRC Press, pp 107–140

    Chapter  Google Scholar 

  • Kabir MM et al (2015c) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201–208

    Article  Google Scholar 

  • Karthikeyan OP, Visvanathan C (2012) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol 12(3):257–284

    Article  Google Scholar 

  • Kato MT et al (1994) Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters. Biotechnol Bioeng 44(4):469–479

    Article  Google Scholar 

  • Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview on practical solutions. Environ Technol 20(4):11

    Article  Google Scholar 

  • Kelleher M (2007) Anaerobic digestion outlook For MSW streams. Biocycle 48:51

    Google Scholar 

  • Khalid A et al (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744

    Article  Google Scholar 

  • Khanal SK (2008) Anaerobic biotechnology for bioenergy production: principles and applications. Blackwell Publishing Company

    Google Scholar 

  • Klass DL (1984) Methane from anaerobic fermentation. Science 223(4640):1021–1028

    Article  Google Scholar 

  • Klindworth A et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1

    Article  Google Scholar 

  • Korres N et al (2013) Bioenergy production by anaerobic digestion using agricultural biomass and organic wastes. Routledge Taylor and Francis Group

    Google Scholar 

  • Kougias PG et al (2016) Dynamic functional characterization and phylogenetic changes due to long chain fatty acids pulses in biogas reactors. Sci Rep 6:28810

    Article  Google Scholar 

  • Kovacs E et al (2015) Augmented biogas production from protein-rich substrates and associated metagenomic changes. Bioresour Technol 178:254–261

    Article  Google Scholar 

  • Krause L et al (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136(1–2):91–101

    Article  Google Scholar 

  • Kröber M et al (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142(1):38–49

    Article  Google Scholar 

  • Lebuhn M et al (2014) Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe 29:10–21

    Article  Google Scholar 

  • Leclerc M, Delgenes JP, Godon JJ (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6(8):809–819

    Article  Google Scholar 

  • Lee SH et al (2012) Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit 14(7):1893–1905

    Article  Google Scholar 

  • Leite AF et al (2015) Improved monitoring of semi-continuous anaerobic digestion of sugarcane waste: effects of increasing organic loading rate on methanogenic community dynamics. Int J Mol Sci 16(10):23210–23226

    Article  Google Scholar 

  • Leite AF et al (2016) Lessons learned from the microbial ecology resulting from different inoculation strategies for biogas production from waste products of the bioethanol/sugar industry. Biotechnol Biofuels 9:144

    Article  Google Scholar 

  • Levén L, Eriksson AR, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59(3):683–693

    Article  Google Scholar 

  • Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 15(1):821–826

    Article  Google Scholar 

  • Li A et al (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6(1):3

    Article  Google Scholar 

  • Li J et al (2015) Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure. Front Microbiol 6:1337

    Google Scholar 

  • Liu FH et al (2009) The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 106(3):952–966

    Article  Google Scholar 

  • Liu X et al (2012) Pilot-scale anaerobic co-digestion of municipal biomass waste: focusing on biogas production and GHG reduction. Renew Energy 44:463–468

    Article  Google Scholar 

  • Lucas R et al. (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol 91(3)

    Google Scholar 

  • Lueders T et al (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3(3):194–204

    Article  Google Scholar 

  • Luning L, van Zundert EH, Brinkmann AJ (2003) Comparison of dry and wet digestion for solid waste. Water Sci Technol 48(4):15–20

    Article  Google Scholar 

  • Luo G et al (2015) New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances. Biotechnol Biofuels 8:3

    Article  Google Scholar 

  • Luton PE et al (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol Sgm 148:3521–3530

    Article  Google Scholar 

  • Lv Z et al (2014) Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods. Anaerobe 29:91–99

    Article  Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Biores Technol 74(1):3–16

    Article  Google Scholar 

  • Maus I et al (2016) Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 9:171

    Article  Google Scholar 

  • Maus I et al (2017) Biphasic study to characterize agricultural biogas plants by high-throughput 16S rRNA gene amplicon sequencing and microscopic analysis. J Microbiol Biotechnol 27(2):321–334

    Article  MathSciNet  Google Scholar 

  • McHugh S, Collins G, O’Flaherty V (2006) Long-term, high-rate anaerobic biological treatment of whey wastewaters at psychrophilic temperatures. Bioresour Technol 97(14):1669–1678

    Article  Google Scholar 

  • Moharram MA, Abdelhalim HS, Rozaik EH (2016) Anaerobic up flow fluidized bed reactor performance as a primary treatment unit in domestic wastewater treatment. HBRC J 12(1):99–105

    Article  Google Scholar 

  • Møller HB, Sommer SG, Ahring BK (2004a) Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. J Environ Qual 33(1):27–36

    Article  Google Scholar 

  • Møller HB, Sommer SG, Ahring BK (2004b) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenerg 26(5):485–495

    Article  Google Scholar 

  • Mulat DG et al (2015) Changing feeding regimes to demonstrate flexible biogas production: effects on process performance, microbial community structure, and methanogenesis pathways. Appl Environ Microbiol 82(2):438–449

    Article  Google Scholar 

  • Munk B et al (2010) Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage. Eng Life Sci 10(8):496–508

    Article  Google Scholar 

  • Munk B et al (2012) A metabolic quotient for methanogenic archaea. Water Sci Technol 66(11):2311–2317

    Article  Google Scholar 

  • Nair RB et al (2015) Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind Crops Prod 69:314–323

    Article  Google Scholar 

  • Nair RB et al. (2016) Optimizing dilute phosphoric acid pretreatment of wheat straw in the laboratory and in a demonstration plant for ethanol and edible fungal biomass production using Neurospora intermedia. J Chem Technol Biotechnol n/a–n/a

    Google Scholar 

  • Nair RB, Lennartsson PR, Taherzadeh MJ (2017) Bioethanol production from agricultural and municipal wastes. In: Current developments in biotechnology and bioengineering. Elsevier, pp 157–190

    Chapter  Google Scholar 

  • Nettmann E et al (2008) Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. J Appl Microbiol 105(6):1835–1850

    Article  Google Scholar 

  • Neves L et al (2008) Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Manag 28(6):965–972

    Article  Google Scholar 

  • Nikolausz M et al (2005) Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiol Lett 244(2):385–390

    Article  Google Scholar 

  • Nikolausz M et al (2013) Evaluation of stable isotope fingerprinting techniques for the assessment of the predominant methanogenic pathways in anaerobic digesters. Appl Microbiol Biotechnol 97(5):2251–2262

    Article  Google Scholar 

  • Nolla-Ardevol V, Strous M, Tegetmeyer HE (2015) Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome. Front Microbiol 6:597

    Article  Google Scholar 

  • Oleszkiewicz JA, Sharma VK (1990) Stimulation and inhibition of anaerobic processes by heavy metals—a review. Biol Wastes 31(1):45–67

    Article  Google Scholar 

  • Ortseifen V et al (2016) An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 231:268–279

    Article  Google Scholar 

  • Owens JM, Chynoweth DP (1993) Biochemical methane potential of municipal solid waste (MSW) components. Water Sci Technol 27(2):14

    Article  Google Scholar 

  • Ozbayram EG et al (2017) Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Anaerobe 46:122–130

    Article  Google Scholar 

  • Pagés-Díaz J et al (2011) Co-digestion of different waste mixtures from agro-industrial activities: kinetic evaluation and synergetic effects. Biores Technol 102(23):10834–10840

    Article  Google Scholar 

  • Pagés-Díaz J et al (2015) Semi-continuous co-digestion of solid cattle slaughterhouse wastes with other waste streams: interactions within the mixtures and methanogenic community structure. Chem Eng J 273:28–36

    Article  Google Scholar 

  • Pandit PD et al (2016) Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community. Bioresour Technol 216:923–930

    Article  Google Scholar 

  • Patinvoh RJ et al (2017) Dry fermentation of manure with straw in continuous plug flow reactor: reactor development and process stability at different loading rates. Biores Technol 224:197–205

    Article  Google Scholar 

  • Poirier S et al (2016) Anaerobic digestion of biowaste under extreme ammonia concentration: identification of key microbial phylotypes. Bioresour Technol 207:92–101

    Article  Google Scholar 

  • Pope PB et al (2011) Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 333(6042):646–648

    Article  Google Scholar 

  • Popp D et al (2015) Biogas production from coumarin-rich plants–inhibition by coumarin and recovery by adaptation of the bacterial community. FEMS Microbiol Ecol 91(9):fiv103

    Article  Google Scholar 

  • Popp D et al (2017) Inhibitory effect of coumarin on syntrophic fatty acid oxidizing and methanogenic cultures and biogas reactor microbiomes. Appl Environ Microbiol

    Article  Google Scholar 

  • Pore SD et al (2016) Metagenome changes in the biogas producing community during anaerobic digestion of rice straw. Bioresour Technol 213:50–53

    Article  Google Scholar 

  • Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat Rev Microbiol 13(7):439–446

    Article  Google Scholar 

  • Rastogi G et al (2008) Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Biores Technol 99(13):5317–5326

    Article  Google Scholar 

  • Regueiro L, Lema JM, Carballa M (2015) Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresour Technol 197:208–216

    Article  Google Scholar 

  • Resch C et al (2011) Enhancement options for the utilisation of nitrogen rich animal by-products in anaerobic digestion. Biores Technol 102(3):2503–2510

    Article  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26(10):1117–1124

    Article  Google Scholar 

  • Salehian P, Karimi K (2013) Alkali pretreatment for improvement of biogas and ethanol production from different waste parts of pine tree. Ind Eng Chem Res 52(2):972–978

    Article  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–280

    Google Scholar 

  • Schlüter A et al (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136(1–2):77–90

    Article  Google Scholar 

  • Schnürer A (2016) Biogas production: microbiology and technology. Adv Biochem Eng Biotechnol 156:195–234

    Google Scholar 

  • Schnürer A, Jarvis Å (2009) Mikrobiologisk handbok för biogas anläggningar. Rapport U2009 3

    Google Scholar 

  • Schnürer A, Jarvis Å (2010) Microbiological handbook for biogas plants. Swedish Waste Management U2009:03. Swedish Gas Centre Report 207 Volume 1–138

    Google Scholar 

  • Sharma A, Unni BG, Singh HD (1999) A novel fed-batch digestion system for biomethanation of plant biomasses. J Biosci Bioeng 87(5):678–682

    Article  Google Scholar 

  • Sipos R et al (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60(2):341–350

    Article  Google Scholar 

  • Soccol RC et al (2011) Lignocellulosic bioethanol: current status and future perspectives. In: Biofuels. Academic Press, Amsterdam, pp 101–122

    Google Scholar 

  • Solli L et al (2014) A metagenomic study of the microbial communities in four parallel biogas reactors. Biotechnol Biofuels 7(1):146

    Article  Google Scholar 

  • Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74(21):6663–6671

    Article  Google Scholar 

  • Sträuber H, Lucas R, Kleinsteuber S (2016) Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl Microbiol Biotechnol 100(1):479–491

    Article  Google Scholar 

  • Sun L et al (2015) Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol 8(5):815–827

    Article  Google Scholar 

  • Sun L et al (2016) The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol Biofuels 9:128

    Article  Google Scholar 

  • Sundberg C et al (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  Google Scholar 

  • Talbot G et al (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42(3):513–537

    Article  Google Scholar 

  • Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill Companies, Incorporated

    Google Scholar 

  • Teghammar A et al (2010) Pretreatment of paper tube residuals for improved biogas production. Biores Technol 101(4):1206–1212

    Article  Google Scholar 

  • Teghammar A et al (2012) Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy 36:116–120

    Article  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2(1):3

    Article  Google Scholar 

  • Tognetti C, Mazzarino MJ, Laos F (2011) Comprehensive quality assessment of municipal organic waste composts produced by different preparation methods. Waste Manag 31(6):1146–1152

    Article  Google Scholar 

  • Town J et al (2014) Microbial community composition is consistent across anaerobic digesters processing wheat-based fuel ethanol waste streams. Bioresour Technol 157:127–133

    Article  Google Scholar 

  • Treu L et al (2016a) Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Bioresour Technol 216:260–266

    Article  Google Scholar 

  • Treu L et al (2016b) Untangling the effect of fatty acid addition at species level revealed different transcriptional responses of the biogas microbial community members. Environ Sci Technol 50(11):6079–6090

    Article  Google Scholar 

  • Tukacs-Hajos A et al (2014) Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp. Bioresour Technol 166:288–294

    Article  Google Scholar 

  • Tyson GW et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43

    Article  Google Scholar 

  • Vandevivere P, Baere LD, Verstraete W (2003) Types of anaerobic digester for solid wastes. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, pp 111–140

    Google Scholar 

  • Vanwonterghem I et al (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  Google Scholar 

  • Vanwonterghem I et al (2016) Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. Environ Microbiol 18(9):3144–3158

    Article  Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Biores Technol 56(2):229–237

    Article  Google Scholar 

  • Verma S (2002) Anaerobic digestion of biodegradable organics in municipal solid wastes. M.Sc. Dissertation, Department of Earth and Environmental Engineering; School of Engineering and Applied Science, Columbia University

    Google Scholar 

  • Vietitez ER, Ghosh S (1997) Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass Bioenergy 16:11

    Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501

    Article  Google Scholar 

  • Wan C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102(10):6254–6259

    Article  Google Scholar 

  • Wang W, Ji S, Lee I (2013) Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenerg 51:35–42

    Article  Google Scholar 

  • Wang M et al (2015) Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester. Front Microbiol 6:509

    Google Scholar 

  • Ward AJ et al (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940

    Article  Google Scholar 

  • Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109:1–2

    Article  Google Scholar 

  • Wellinger A, Wyder K, Metzler AE (1993) Kompogas—a new system for the anaerobic treatment of source separated waste. Water Sci Technol 27(2):153–158

    Article  Google Scholar 

  • Werner JJ et al (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci USA 108(10):4158–4163

    Article  Google Scholar 

  • Westerholm M et al (2011) Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ 26(4):347–353

    Article  Google Scholar 

  • Wilkins D et al (2015) Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl Environ Microbiol 81(2):604–613

    Article  Google Scholar 

  • Wintsche B et al (2016) Trace elements induce predominance among methanogenic activity in anaerobic digestion. Front Microbiol 7:2034

    Article  Google Scholar 

  • Wirth R et al (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41

    Article  Google Scholar 

  • Wong MT et al (2013) Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment. Biotechnol Biofuels 6(1):38

    Article  Google Scholar 

  • Xia Y et al (2013) Mining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics. PLoS ONE 8(1):e53779

    Article  Google Scholar 

  • Xu K et al (2009) Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Anaerobe 15(5):204–213

    Article  Google Scholar 

  • Yan X et al (2013) Discovery of (hemi-) cellulase genes in a metagenomic library from a biogas digester using 454 pyrosequencing. Appl Microbiol Biotechnol 97(18):8173–8182

    Article  Google Scholar 

  • Yang Y et al (2004) Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose. Biores Technol 94(2):197–201

    Article  MathSciNet  Google Scholar 

  • Yang L et al (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energy Rev 44:824–834

    Article  Google Scholar 

  • Yang C et al (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9:138

    Article  Google Scholar 

  • Zakrzewski M et al (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258

    Article  Google Scholar 

  • Zandvoort MH et al (2006) Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Eng Life Sci 6(3):293–301

    Article  Google Scholar 

  • Zhang C, Yuan Q, Lu Y (2014) Inhibitory effects of ammonia on methanogen mcrA transcripts in anaerobic digester sludge. FEMS Microbiol Ecol 87(2):368–377

    Article  Google Scholar 

  • Zhao Q, Kugel G (1996) Thermophilic/mesophilic digestion of sewage sludge and organic wastes. J Environ Sci Health Part A 31(9):2211–2231

    Google Scholar 

  • Ziganshin AM et al (2011) Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol 89(6):2039–2052

    Article  Google Scholar 

  • Ziganshin AM et al (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 97(11):5161–5174

    Article  Google Scholar 

  • Ziganshin AM et al (2016a) Comparative analysis of methanogenic communities in different laboratory-scale anaerobic digesters. Archaea 2016:3401272

    Article  Google Scholar 

  • Ziganshin AM et al (2016b) Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems. Bioresour Technol 217:62–71

    Article  Google Scholar 

  • Zuo Z et al (2013) Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Biores Technol 146:556–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Sárvári Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robles, G., Nair, R.B., Kleinsteuber, S., Nikolausz, M., Sárvári Horváth, I. (2018). Biogas Production: Microbiological Aspects. In: Tabatabaei, M., Ghanavati, H. (eds) Biogas. Biofuel and Biorefinery Technologies, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-77335-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77335-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77334-6

  • Online ISBN: 978-3-319-77335-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics