Advertisement

Flow Induced Processes Causing Oriented Crystallization

  • Hermann Janeschitz-Kriegl
Chapter

Abstract

The investigations in this field started around the year 1970. From the beginning shear flow and extensional flow experiments were carried out. Another classification was with respect to experiments, where flow was continued until the viscosity of the melt started to increase rapidly, and those where the progress of crystallization was followed during flow in a more subtle way by dilatometry , by scattering experiments or by a count of upcoming nuclei.

References

  1. 1.
    Haas TW, Maxwell B (1969) Effects of shear stress on the crystallization of linear polyethylene and polybutene-1. Polym Eng Sci 9:225–241CrossRefGoogle Scholar
  2. 2.
    Mackley MR, Keller A (1973) Flow induced crystallization of polyethylene melts. Polymer 14:16–20CrossRefGoogle Scholar
  3. 3.
    Sherwood CH, Price FP, Stein RS (1978) Effect of shear on the crystallization kinetics of poly(ethylene oxide) and poly(ε-caprolactone) melts. J Polym Sci Polym Symp 63:77–94CrossRefGoogle Scholar
  4. 4.
    Ulrich RD, Price FP (1976) Morphology development during shearing of poly(ethylene oxide) melts. J Appl Polym Sci 20:1077–1093CrossRefGoogle Scholar
  5. 5.
    Wolkowicz MD (1978) Nucleation and crystal growth in sheared poly(1-butene) melts. J Polym Sci Polym Symp 63:365–382CrossRefGoogle Scholar
  6. 6.
    Van der Vegt AK, Smit PPA (1967) Crystallization phenomena in flowing polymers. Soc Chem Ind London Mongr 26:313–326Google Scholar
  7. 7.
    Devaux N, Monasse B, Haudin JM, Moldenaers P, Vermant J (2004) Rheooptical study of the early stages of flow enhanced crystallization in isotactic polypropylene. Rheol Acta 43:210–222CrossRefGoogle Scholar
  8. 8.
    Pogodina NV, Lavrenko VP, Srinivas S, Winter HH (2001) Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear induced crystallization. Polymer 42:9031–9043CrossRefGoogle Scholar
  9. 9.
    Wereta A, Gogos CG (1971) Crystallization studies on deformed polybutene-1 melts. Polym Eng Sci 11:19–27CrossRefGoogle Scholar
  10. 10.
    Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364CrossRefGoogle Scholar
  11. 11.
    Janeschitz-Kriegl H, Ratajski E (2005) Kinetics of polymer crystallization under processing conditions: transformation of dormant nuclei by the action of flow. Polymer 46:3856–3870CrossRefGoogle Scholar
  12. 12.
    Janeschitz-Kriegl H, Ratajski E, Eder G (2014) Unlimited shear as a source of information in polymer melt processing. Int Polym Proc 29:402–411CrossRefGoogle Scholar
  13. 13.
    Monasse B (1992) Polypropylene nucleation on a glass fiber after melt shearing. Mater Sci 27:6047–6052CrossRefGoogle Scholar
  14. 14.
    Kantz MR, Newman HD, Stigale FH (1972) The skin-core morphology and structure properties relationship in injection molded polypropylene. J Appl Polym Sci 16:1249–1260CrossRefGoogle Scholar
  15. 15.
    Mencik Z, Fitchmun DR (1973) Texture in injection molded polypropylene. J Polym Sci Polym Phys Ed 11:973–989Google Scholar
  16. 16.
    Tadmor Z (1974) Molecular orientation in injection molding. J Appl Polym Sci 18:1753–1772CrossRefGoogle Scholar
  17. 17.
    Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) On the kinetics of shear induced crystallization in polypropylene. Int Polym Proc 8:236–244CrossRefGoogle Scholar
  18. 18.
    Kumaraswamy G, Verma RK, Kornfield JA (1999) A novel flow apparatus for investigating shear-enhanced crystallization and structure development in semicrystalline polymers. Rev Sci Instr 70:2097–2104CrossRefGoogle Scholar
  19. 19.
    Flory PJ (1947) Thermodynamics of crystallization in high polymers. J Chem Phys 15:397–408CrossRefGoogle Scholar
  20. 20.
    Gaylord RJ, Lohse DJ (1976) Morphological changes during oriented polymer crystallization. Polym Eng Sci 16:163–167CrossRefGoogle Scholar
  21. 21.
    Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Progr Polym Sci 15(629–714):678Google Scholar
  22. 22.
    Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin, pp 46,63,113,146,175Google Scholar
  23. 23.
    Wales JLS, Philippoff W (1973) Anisotropy of simple shearing flow. Rheol Acta 12:25–34CrossRefGoogle Scholar
  24. 24.
    Bandrup J, Immergut EH (eds) (1975) Polymer handbook 2nd edn. Wiley, New York, p. V-16Google Scholar
  25. 25.
    Münstedt H, Laun HM (1979) Elongational behavior of a low density polyethylene melt. II. Transient behavior in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol Acta 18:492–504CrossRefGoogle Scholar
  26. 26.
    Wales JLS (1976) The application of flow birefringence to rheological studies of polymer melts. Doctoral thesis, Delft University PressGoogle Scholar
  27. 27.
    Brochard-Wyart F, de Gennes PG (1988) Ségrègration par traction dans un homopolymere. CR Acad Sci Paris II 306:699–702Google Scholar
  28. 28.
    Eder G, Janeschitz-Kriegl H (1997) Processing of polymers 5: crystallization. Mat Sci Techn 18:269–342Google Scholar
  29. 29.
    Ma Zha, Balzano L, Peters GWM (2012) Pressure quench of flow-induced crystallization procurcors. Macromolecules 45:4216–4224CrossRefGoogle Scholar
  30. 30.
    Boon J, Challa G, Van Krevelen DW (1968) Crystallization kinetics of isotactic polystyrene II: Influence of thermal history on number of nuclei. J Polym Sci A-2 6:1835–1851CrossRefGoogle Scholar
  31. 31.
    Van Krevelen DW (1978) Crystallinity of polymers and the means to influence the crystallization process. Chimia 32:279–294Google Scholar
  32. 32.
    Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, p 592Google Scholar
  33. 33.
    Keller A, Kolnaar HWH (1997) Processing of polymers 4: Flow-induced orientation and structure formation. Mat Sci Techn 18:189–268Google Scholar
  34. 34.
    Mandelkern L (2004) Crystallization of polymers, vol. 2, 2nd edn. Cambridge University Press, p. 372Google Scholar
  35. 35.
    Eder G, Janeschitz-Kriegl H, Krobath G (1989) Shear induced crystallization, a relaxation phenomenon in polymer melts. Progr Colloid Polym Sci 80:1–7CrossRefGoogle Scholar
  36. 36.
    De Gennes PG (1982) Kinetics of diffusion controlled processes in dense polymer systems. II Effect of entanglements. J Chem Phys 76:3322–3326CrossRefGoogle Scholar
  37. 37.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Claredon Press, OxfordGoogle Scholar
  38. 38.
    Liedauer S, Eder G, Janeschitz-Kriegl H (1995) On the limitations of shear induced crystallization in polypropylene melts. Int Polym Proc 10:243–250CrossRefGoogle Scholar
  39. 39.
    Kimata S, Sakurai T, Nozue Y, Kasahava T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the shish-Kebab morphology in polymer crystallization. Science 316:1014–1017CrossRefGoogle Scholar
  40. 40.
    Kumaraswamy G, Verma RK, Issian AM, Wang P, Kornfield JA, Yeh F, Hsiao BS, Olley RH (2000) Shear-enhanced crystallization in isotactic polypropylene part 2. Analysis of the formation of the oriented “skin”. Polymer 41:8931–8940CrossRefGoogle Scholar
  41. 41.
    Kumaraswamy G, Issian AM, Kornfield JA (1999) Shear enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules 32:7537–7547CrossRefGoogle Scholar
  42. 42.
    Williams ML, Landel RF, Ferry JD (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids. J Am Chem Soc 77:3701–3707CrossRefGoogle Scholar
  43. 43.
    Kumaraswamy G, Kornfield JA, Yeh F, Hsiao BS (2002) Shear-enhanced crystallization in isotactic polypropylene. 3. Evidence of a kinetic pathway to nucleation. Macromolecules 35:1762–1769CrossRefGoogle Scholar
  44. 44.
    Seki M, Thurman DW, Oberhauser JP, Kornfield JA (2002) Shear-mediated crystallization of isotactic polypropylene: the role of long-chain chain overlap. Macromolecules 35:2583–2594CrossRefGoogle Scholar
  45. 45.
    De Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University PressGoogle Scholar
  46. 46.
    Jeffrey GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc Roy Soc London 102:161–179CrossRefGoogle Scholar
  47. 47.
    Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley, New York, p 171Google Scholar
  48. 48.
    Stadlbauer M, Janeschitz-Kriegl H, Lipp M, Eder G, Forstner R (2004) Extensional rheometer for creep flow at high tensile stress. part I description and validation. J Rheol 48:611–629CrossRefGoogle Scholar
  49. 49.
    Stadlbauer M, Janeschitz-Kriegl H, Eder G, Ratajski E (2004) New extensional rheometer for creep flow at high tensile stress. Part II. Flow induced nucleation for the crystallization of iPP. J Rheol 48:631–639CrossRefGoogle Scholar
  50. 50.
    Eder G, Janeschitz-Kriegl H, Ratajski E (2006) Towards the prediction of structure development in injection molded semicrystalline polymers. In: Greener J, Wimberger-Friedl R(eds) Precision injection molding. pp 137–152. Carl Hanser Verlag MunichGoogle Scholar
  51. 51.
    Kanaya T, Takayama Y, Ogino Y, Matsuba G, Nishida K (2004) Process in understanding of polymer crystallization. In: Reiter G, Strobl G (eds)Springer, Berlin, pp 87–96Google Scholar
  52. 52.
    Janeschitz-Kriegl H, Ratajski E (2014) Flow-induced crystallization in polymer melts: how Winter’s gelation concept fits into the picture. Polym Bull 71:1197–1203CrossRefGoogle Scholar
  53. 53.
    Mackley MR, Wannaborworn S, Gao P, Zhan F (1999) The optical microscopy of sheared liquids using a newly developed optical stage. J Microsc Anal 69:25–27Google Scholar
  54. 54.
    Janeschitz-Kriegl H, Ratajski E (2011) Crystallization in polymer melts: metamorphism of flow induced nuclei. Int Polym Proc 26:460–463CrossRefGoogle Scholar
  55. 55.
    Ratajski E, Janeschitz-Kriegl H (2014) How to determine high growth speeds in polymer melt processing. Colloid Polym Sci 274:938–951CrossRefGoogle Scholar
  56. 56.
    Keller A, Machin MJ (1967) Oriented crystallization in polymers. J Macromol Sci B1:41–91CrossRefGoogle Scholar
  57. 57.
    Janeschitz-Kriegl H, Wimberger-Friedl R, Krobath G, Liedauer S (1987) On the formation of layer structures in plastic parts (in German). Kautschuk + Gummi. Kunststoffe 40:301–307Google Scholar
  58. 58.
    Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleation agents in shear induced crystallization of isotactic polypropylenes. Int Polym Proc 12:72–77CrossRefGoogle Scholar
  59. 59.
    Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: Linear and non-linear Hoffman-Weeks extrapolation. Macromolecules 31:8219–8229CrossRefGoogle Scholar
  60. 60.
    Braun J, Wippel H, Eder G, Janeschitz-Kriegl H (2003) Industrial solidification processes in polybutene-1. Part II-Influence of shear flow. Polym Eng Sci 43:188–203CrossRefGoogle Scholar
  61. 61.
    Janeschitz-Kriegl H, Eder G (2007) Shear induced crystallization, a relaxation phenomenon in polymer melts: a recollection. J Macromol Sci Part B 46:1–11CrossRefGoogle Scholar
  62. 62.
    Wimberger-Friedl R (1996) Molecular orientation in polycarbonate induced by cooling stress. Int Polym Proc 11:373–382CrossRefGoogle Scholar
  63. 63.
    Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, p 469Google Scholar
  64. 64.
    Alfonso GC (1999) Formation of cylindritic morphology in melt-sheared it-polybutene-1. Polym Mat Sci Eng 81:330–331Google Scholar
  65. 65.
    Alfonso GC, Azzurri F (2001) Shear enhanced polymer crystal nucleation: Interaction between molecular characteristics and flow. In: Conference flow induced crystallization of polymers, SalernoGoogle Scholar
  66. 66.
    Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728CrossRefGoogle Scholar
  67. 67.
    Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Part B Polym Phys 34:657–670CrossRefGoogle Scholar
  68. 68.
    Garcia Gutierrez MC, Alfonso GC, Rickel C, Azzurri F (2004) Spatially resolved flow-induced crystallization precursors in isotactic polystyrene by simultaneous small- and wide-angle X-ray microdifraction. Macromolecules 37:478–485CrossRefGoogle Scholar
  69. 69.
    Al-Hussein M, Strobl G (2002) The melting line, the crystallization line and the equilibrium melting temperature of isotactic polystyrene. Macromolecules 35:1672–1676CrossRefGoogle Scholar
  70. 70.
    Azzurri F, Alfonso GC (2008) Insights on formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules 41:1377–1383CrossRefGoogle Scholar
  71. 71.
    Stratton RA (1966) The dependence of non-Newtonian viscosity on molecular weight for “monodisperse” polystyrenes. J Colloid Interface Sci 22:517–530CrossRefGoogle Scholar
  72. 72.
    Monasse B (1995) Nucleation and anisotropic crystalline growth of polyethylene under shear. J Mat Sci 30:5002–5012CrossRefGoogle Scholar
  73. 73.
    Lippits DR, Rastogi S, Höhne GWH (2006) Melting kinetics of polymers. Phys Rev Lett 96:218303-1–218303-4CrossRefGoogle Scholar
  74. 74.
    Lippits DR, Rastogi S, Höhne GWH, Mezari B, Magusin PCMM (2007) Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization. Macromolecules 40:1004–1010CrossRefGoogle Scholar
  75. 75.
    Mackley MR, Hassell DG (2011) The multipass rheometer, a review. J Non-Newton Fluid Mech 166:421–456CrossRefGoogle Scholar
  76. 76.
    Lagasse RR, Maxwell B (1976) An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci 16:189–199CrossRefGoogle Scholar
  77. 77.
    Hadinata C, Gabriel C, Ruellmann M, Laun HM (2005) Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution. J Rheol 49:327–349CrossRefGoogle Scholar
  78. 78.
    Hadinata C, Gabriel C, Ruellmann M, Kao N, Laun HM (2006) Shear-induced crystallization of PB-1 up to processing relevant shear rates. Rheol Acta 45:539–546CrossRefGoogle Scholar
  79. 79.
    Chen Q, Fan Y, Zheng Q (2006) Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene. Rheol Acta 46:305–316CrossRefGoogle Scholar
  80. 80.
    Hadinata C, Boos D, Gabriel C, Wassner E, Rüllmann M, Laun HM (2007) Elongation-induced crystallization of high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization. J Rheol 51:195–215CrossRefGoogle Scholar
  81. 81.
    Okamoto M, Kubo H, Kotaka T (1998) Elongational flow-induced crystallization and structure development in supercooled poly(ethylene naphthalate). Macromolecules 31:4223–4231CrossRefGoogle Scholar
  82. 82.
    Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRefGoogle Scholar
  83. 83.
    Samon JM, Schultz JM, Hsiao BS (2002) Structure development in the early stages of crystallization during melt spinning. Polymer 43:1873–1875CrossRefGoogle Scholar
  84. 84.
    Gortemaker FH, Hansen MG, de Cindio B, Laun HM, Janeschitz-Kriegl H (1976) Flow bire- fringence of polymer melts: application to the investigation of time dependent rheological properties. Rheol Acta 15:256–267CrossRefGoogle Scholar
  85. 85.
    Lodge AS (1964) Elastic liquids. Academic Press, New YorkGoogle Scholar
  86. 86.
    Janeschitz-Kriegl M, Janeschitz-Kriegl H, Eder G, Forstner R (2006) Heat transfer through metal walls of finite thickness. Int Polym Proc 21:41–48CrossRefGoogle Scholar
  87. 87.
    Zheng R, Tanner RI, Xi-Jun Fan (2011) Injection molding. Springer, Berlin, p 64 Also personal communicationCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations