Kinetics and Structure Formation in Unloaded Quiescent Melts

  • Hermann Janeschitz-Kriegl


It goes without saying that structure formation in a permanently quiescent unloaded melt does hardly ever occur in practical polymer processing. In fact, flow and pressurization are virtually inevitable. Nevertheless, the present chapter will prove to be of great importance, as flow or pressure induced crystallization cannot be understood without a profound basic knowledge of the processes occurring in a permanently quiescent melt, which has not been put under pressure. Such a melt must be cooled down in its quiescent state from a temperature well above the equilibrium melting point, where the residues of previous crystallization processes are erased.


  1. 1.
    Van Krevelen DW (1978) Crystallinity of polymers and the means to influence the crystallization process. Chimia 32:279–294Google Scholar
  2. 2.
    Fisher JC, Hollomon JH, Turnbull D (1948) Nucleation. J Appl Phys 19:775–784CrossRefGoogle Scholar
  3. 3.
    Janeschitz-Kriegl H, Ratajski E, Wippel H (1999) The physics of athermal nuclei in polymer crystallization. Colloid Polym Sci 277:217–226CrossRefGoogle Scholar
  4. 4.
    Braun J, Pillichshammer D, Eder G, Janeschitz-Kriegl H (2003) Industrial solidification processes in polybutene-1. Part I—Quiescent melts. Polym Eng Sci 43:180–187CrossRefGoogle Scholar
  5. 5.
    Stadlbauer M, Eder G, Janeschitz-Kriegl H (2001) Crystallization kinetics of two aliphatic polyketones. Polymer 42:3809–3816CrossRefGoogle Scholar
  6. 6.
    Chew S, Griffiths JR, Stachurski JH (1989) The crystallization kinetics of polyethylene under isothermal and non-isothermal conditions. Polymer 30:874–881CrossRefGoogle Scholar
  7. 7.
    Janeschitz-Kriegl H, Eder G, Stadlbauer M, Ratajski E (2005) A thermodynamic frame for the kinetics of polymer crystallization under processing conditions. Monatshefte für Chemie (Chemical Monthly) 136:1119–1137CrossRefGoogle Scholar
  8. 8.
    Eder G, Janeschitz-Kriegl H (1997) Processing of polymers: crystallization. Mat Sci Tech (VCH-Wiley) 18:269–342Google Scholar
  9. 9.
    Gandica A, Magill JH (1972) A universal relationship for the crystallization kinetics of polymer materials. Polymer 13:595–596CrossRefGoogle Scholar
  10. 10.
    Ratajski E, Janeschitz-Kriegl H (1996) How to determine high growth speeds in polymer crystallization. Colloid Polym Sci 274:938–951CrossRefGoogle Scholar
  11. 11.
    Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 74:134–158CrossRefGoogle Scholar
  12. 12.
    Wunderlich B (1973) Macromolecular physics, vol 1. Academic Press, p 282Google Scholar
  13. 13.
    Lovinger AJ, Chua JO, Gryte CC (1977) Studies of the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys Ed 15:641–656CrossRefGoogle Scholar
  14. 14.
    Janeschitz-Kriegl H, Wimberger-Friedl R, Krobath G, Liedauer S (1987) On the development of layer structures in injected plastic parts (in German). Kautschuk + Gummi. Kunststoffe 40:301–307Google Scholar
  15. 15.
    Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Prog Polym Sci 15:627–714CrossRefGoogle Scholar
  16. 16.
    Berger J, Schneider W (1986) A zone model of rate controlled solidification. Plast Rubber Process Appl 6:127–133Google Scholar
  17. 17.
    Stein RS, Rhodes MB (1960) Photographic light scattering by polyethylene films. J Appl Polym Sci 31:1873–1884Google Scholar
  18. 18.
    Keijzers AEM (1967) Light scattering by crystalline polystyrene and polypropylene. Doctoral thesis Delft, The Netherlands, p 23Google Scholar
  19. 19.
    Keijzers AEM, Van Aartsen JJ, Prins W (1968) Light scattering by crystalline polystyrene and polypropylene. J Am Chem Soc 90:3107–3113CrossRefGoogle Scholar
  20. 20.
    Van Antwerpen F (1971) Kinetics of crystallization phenomena of spherulites in poly(ethylene terephthalate). Doctoral thesis Delft, The NetherlandsGoogle Scholar
  21. 21.
    Van Antwerpen F, Van Krevelen DW (1972) Light scattering method for investigation of the kinetics of crystallization of spherulites. J Polym Sci Polym Phys ed 10:2409–2421Google Scholar
  22. 22.
    Van Krevelen DW (1990) Properties of polymers, 3rd ed. Elsevier, p 594–603Google Scholar
  23. 23.
    Magill JH (1967) Crystallization of poly(tetra methyl-p-silphenylene)siloxane J Polym Sci A-2, 5:89–99Google Scholar
  24. 24.
    Heijboer J (1968) Study of the movements of cycloalkyl side groups in polymethacrylates by dynamic mechanical measurements. J Polym Sci C 16:3413–3422CrossRefGoogle Scholar
  25. 25.
    Ziabicki A, Alfonso GC (1994) Memory effects in isothermal crystallization I. Colloid Polym Sci 272:1027–1042CrossRefGoogle Scholar
  26. 26.
    Mandelkern L, Kim H (1968) Temperature dependence of the bulk crystallization rate of polymers. J Polym Sci A-2, 6:965–706Google Scholar
  27. 27.
    Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folding: bulk polymers. SPE Trans 4:315–362Google Scholar
  28. 28.
    Williams ML, Landel RF, Ferry JD (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids. J Am Chem Soc 77:3701–3707CrossRefGoogle Scholar
  29. 29.
    Hoffman JD, Davis GT, Lauritzen JI Jr (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 3, chap 7. Plenum Press, New YorkGoogle Scholar
  30. 30.
    Clark EJ, Hoffman JD (1984) Regime III crystallization in polypropylene. Macromolecules 17:878–885CrossRefGoogle Scholar
  31. 31.
    Van Antwerpen F, Van Krevelen DW (1972) Influence of crystallization temperature, molar weight and additives on the crystallization kinetics of poly (ethylene terephthalate). J Polym Sci Polym Phys Ed 10:2423–2435Google Scholar
  32. 32.
    Mandelkern L (2004) Crystallization of polmyers. In: Kinetics and mechanisms, 2nd ed, vol 2. Cambridge University Press, pp 1–204Google Scholar
  33. 33.
    Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151–3212CrossRefGoogle Scholar
  34. 34.
    Lauritzen JI Jr, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Nat Bur Stand 64A:73–102Google Scholar
  35. 35.
    Hoffman JD, Lauritzen JI (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Nat Bur Stand 65A:297–336CrossRefGoogle Scholar
  36. 36.
    Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. Polym Lett 4:481–486CrossRefGoogle Scholar
  37. 37.
    Larson MA, Garside J (1986) Solute clustering in supersaturated solutions. Chem Eng Sci 41:1285–1289CrossRefGoogle Scholar
  38. 38.
    Larson MA, Garside J (1986) Solute clustering and surface tension. J Cryst Growth 76:88–92CrossRefGoogle Scholar
  39. 39.
    Becker R, Döring W (1935) Kinetic treatment of nucleation in supersaturated vapour (in German) Ann Phys 5,24:719–752Google Scholar
  40. 40.
    Tolman RC (1949) The effect of droplet size on the surface tension. J Chem Phys 17:331–337Google Scholar
  41. 41.
    Rusli IT, Larson MA (1987) Solute cluster formation in saturated solutions. In: Stratman, Klein, Melis (eds) Cryst Precip Proc Int Symp. Pergamon Press, p 71Google Scholar
  42. 42.
    Janeschitz-Kriegl H (1997) Conditions of nucleation in crystallizable polymers, a reconnaisance of positions. Colloid Polym Sci 275:1121–1135CrossRefGoogle Scholar
  43. 43.
    Pechhold W, Hauber MET, Liska E (1973) Meander model of amorphous polymers. Kolloid Z Z Polym 251:818–828CrossRefGoogle Scholar
  44. 44.
    Eder G, Janeschitz-Kriegl H, Krobath G (1989) Shear induced crystallization, a relaxation phenomenon in polymer melts. Progr Colloid Polym Sci 80:1–7CrossRefGoogle Scholar
  45. 45.
    Janeschitz-Kriegl H, Eder G (2007) Shear induced crystallization, a relaxation phenomenon in polymer melts. A recollection. J Macromol Sci B Phys 46:1–11CrossRefGoogle Scholar
  46. 46.
    Janeschitz-Kriegl H (2003) How to understand nucleation in crystallizing polymer melts under real processing conditions. Colloid Polym Sci 281:1157–1171CrossRefGoogle Scholar
  47. 47.
    Keller A (1957) Single crystals in polymers: evidence of folded chain configuration. Phil Mag 2:1171–1175CrossRefGoogle Scholar
  48. 48.
    Olsen AP, Flagan RC, Kornfield JA (2006) Manipulation of athermal nuclei in aqueous poly (ethylene oxide) by scanning activity gravimetric analysis. Macromolecules 39:8419–8427CrossRefGoogle Scholar
  49. 49.
    Strobl G (1996) The Physics of polymers. Springer, p 160Google Scholar
  50. 50.
    Prime RB, Wunderlich B, Melillo L (1969) Extended chain crystals V. Thermal analysis and electron microscopy of the melting process in polyethylene. J Polym Sci A-2, 7:2091–2099Google Scholar
  51. 51.
    Bassett DC (1981) Principles of polymer morphology. Cambridge University Press, p 168Google Scholar
  52. 52.
    Woodward AE (1989) Atlas of polymer morphology. Hanser Verlag pp 106–115Google Scholar
  53. 53.
    Hoffman JD, Weeks JJ (1962) Melting process and equilibrium melting temperature of poly (chloro trifluoro ethylene). J Res Nat Bur Stand A66:13–28CrossRefGoogle Scholar
  54. 54.
    Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and non-linear Hoffman-Weeks extrapolation. Macromolecules 31:8219–8229CrossRefGoogle Scholar
  55. 55.
    Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382CrossRefGoogle Scholar
  56. 56.
    Pogodina NV, Winter HH (1998) Polypropylene crystallization as a physical gelation process. Macromolecules 31:8164–8172CrossRefGoogle Scholar
  57. 57.
    Acierno S, Grizzuti N (2003) Measurement of the rheological behavior of a crystallizing polymer by the “inverse quenching” technique. J Rheol 47:569–576CrossRefGoogle Scholar
  58. 58.
    Janeschitz-Kriegl H, Ratajski E (2014) Flow induced crystallization in polymer melts: how Winter’s gelation concept fits into the picture. Polym Bull 71:1197–1118CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations