Skip to main content

Required Basic Achievements

  • Chapter
  • First Online:
  • 628 Accesses

Abstract

It is evident that the three transport phenomena, which are mentioned in the title of this section, are involved in structure formation during processing. In particular, flow is always engaged in mold filling. In one respect flow causes macroscopic heat and momentum transport. But it has also an enormous influence on the crystallization kinetics. Actually, crystallization is the consequence of transport on a micro-scale. It is rendered possible by rearrangements of molecules. However, these rearrangements are favored by flow. This seems obvious. But nobody would have expected that the influence of flow should be so tremendous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tribout C, Monasse B, Haudin JM (1996) Experimental study of shear-induced crystallization of an impact polypropylene copolymer. Colloid Polym Sci 274:197–208

    Article  CAS  Google Scholar 

  2. Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364

    Article  CAS  Google Scholar 

  3. Stadlbauer M, Janeschitz-Kriegl H, Eder G, Ratajski E (2004) New extensional rheometer for creep flow at high tensile stress, part II. Flow induced nucleation for the crystallization of iPP. J Rheol 48:631–639

    Article  CAS  Google Scholar 

  4. Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and non-linear Hoffman-Weeks extrapolation. Macromolecules 31:8219–8229

    Article  CAS  Google Scholar 

  5. Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin, pp 181–187, p 424

    Google Scholar 

  6. Smoluchowsky M (1916, in German) An attempt of a mathematical theory of the kinetics of coagulation in colloidal solusions. Z phys Chemie XCII:129–168

    Google Scholar 

  7. Ratajski E, Janeschitz-Kriegl H (1996) How to determine high growth speeds in polymer crystallization. Colloid Polym Sci 274:938–951

    Article  CAS  Google Scholar 

  8. Gandica A, Magill JH (1972) A universal relationship for the crystallization kinetics of polymeric materials. Polymer 13:595–596

    Article  CAS  Google Scholar 

  9. Janeschitz-Kriegl H, Eder G, Stadlbauer M, Ratajski E (2005, in English) A thermodynamic frame for the kinetics of polymer crystallization under process conditions. Monatshefte für Chemie 136:1119–1137

    Google Scholar 

  10. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, Oxford, New York, Tokyo, p 120

    Google Scholar 

  11. Woodward AE (1989) Atlas of polymer morphology. Hanser Publishers, Munich, Vienna, New York, p 106–109

    Google Scholar 

  12. Prime RB, Wunderlich B, Melillo L (1969) Extended chain crystals V. Thermal analysis and electron microscopy of the melting process in polyethylene. J Polym Sci A-2 7:2091–2097

    Google Scholar 

  13. Keller A (1957) Single crystals in polymers: evidence of folded-chain configuration. Philos Mag 2:1171–1175

    Article  CAS  Google Scholar 

  14. Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151–3212

    Article  CAS  Google Scholar 

  15. Eder G, Janeschitz-Kriegl H, Krobath G (1989) Shear induced crystallization, a relaxation phenomenon in polymer melts. Progr Colloid Polym Sci 80:1–7

    Article  CAS  Google Scholar 

  16. Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728

    Article  CAS  Google Scholar 

  17. Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. Polym Lett 4:481–486

    Article  CAS  Google Scholar 

  18. Kolmogoroff AN (1937, in Russian) On the statistical theory of the crystallization of metals. Bull Acad Nauk SSSR Math Ser 1:355–359

    Google Scholar 

  19. Avrami M (1939–1941) Kinetics of phase change I, II, III. J Chem Phys 6:1103–1112, 8:212–224, 9:177–184

    Google Scholar 

  20. Evans VB (1945) The laws of expanding circles and spheres in relation to the lateral growth rate of surface films and grain size of metals. Trans Faraday Soc 41:365–374

    Article  CAS  Google Scholar 

  21. Tobin MC (1974, 1976) Theory of phase transition with growth site impingement I, II. J Polym Sci Phys Ed 12:399–406, 14:2253–2257

    Google Scholar 

  22. Eder G, Janeschitz-Kriegl H (1997) Processing of polymers: crystallization. Mat Sci Tech (VCH-Wiley) 18:269–342

    Google Scholar 

  23. Wunderlich B (1973) Macromolecular physics, vol 1, p 282. Academic Press, New York, London

    Google Scholar 

  24. Eder G (1997) The role of heat transfer problems in standard crystallization experiments. ASME Int HTD 351:131–137

    CAS  Google Scholar 

  25. Nakamura K, Watanabe T, Katayama K, Amano T (1972) Some aspects of non-isothermal crystallization of polymers. I relationship between crystallization temperature, crystallinity and cooling conditions. J Appl Polym Sci 16:1077–1091

    Article  CAS  Google Scholar 

  26. Schneider W, Köppl A, Berger J (1988) Non-isothermal crystallization of polymers. Intern Polym Proc 2:151–154

    Article  CAS  Google Scholar 

  27. Van Krevelen DW (1978) Crystallinity of polymers and the means to influence the crystallization process. Chimia 32:279–294

    Google Scholar 

  28. Eder G (1998) Crystallization in polymer processing: modelling and experimentation. In: Alkeryd L et al (eds) Progress of industrial mathematics at ECMI 98. Teubner, Stuttgart, Leipzig 1999, p 138

    Google Scholar 

  29. Janeschitz-Kriegl H, Eder G (1984) A less familiar feature of crystalline layer growth on a cold surface. Plast Rubber Process Appl 4:145–148

    CAS  Google Scholar 

  30. Astarita G, Kenny JM (1987) The Stefan and Deborah numbers in polymer crystallization. Chem Eng Commun 53:69–110

    Article  CAS  Google Scholar 

  31. Janeschitz-Kriegl H, Eder G, Ratajski E (2006) A process classification number for the solidification of crystallizing materials. Intern Polym Proc 21:521–526

    Article  Google Scholar 

  32. Van Antwerpen F, Van Krevelen DW (1972) Influence of crystallization temperature, molecular weight and additives on the crystallization kinetics of poly(ethylene terephthalate). J Polym Sci Polym Phys Ed 10:2423–2435

    Google Scholar 

  33. Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RI, Van der Vegte EW (2002) High-speed calorimetry for the study of the kinetics of (de)vitrification, crystallization and melting of macromolecules. Macromolecules 35:3601–3613

    Article  CAS  Google Scholar 

  34. Janeschitz-Kriegl H, Wippel H, Paulik Ch, Eder G (1993) Polymer crystallization dynamics, as reflected by differential scanning calorimetry. Part I: on the calibration of the apparatus. Colloid Polym Sci 271:1107–1115

    Article  CAS  Google Scholar 

  35. Wu CH, Eder G, Janeschitz-Kriegl H (1993) Polymer crystallization dynamics, as reflected by differential scanning calorimetry. Part II: numerical simulations. Colloid Polym Sci 271:1116–1126

    Article  CAS  Google Scholar 

  36. Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Progr Polym Sci 15:629–714

    Article  CAS  Google Scholar 

  37. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rates. Thermochim Acta 403:55–63

    Article  CAS  Google Scholar 

  38. Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimeter using thin film sensors. Thermochim Acta 415:1–7

    Article  CAS  Google Scholar 

  39. Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 45:3755–3763

    Article  CAS  Google Scholar 

  40. Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–207

    Article  CAS  Google Scholar 

  41. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567

    Article  Google Scholar 

  42. Janeschitz-Kriegl H (1996) The role of transport phenomena in polymer science. J. Macromol Sci-Pure Appl Chem A 33:841–858

    Article  Google Scholar 

  43. Berger J, Schneider W (1986) A zone model of rate controlled solidification. Plast Rubber Process Appl 6:127–133

    Google Scholar 

  44. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylenes. Makromol Chem 74:134–158

    Article  Google Scholar 

  45. Lovinger AJ, Chua JO, Gryte CC (1977) Studies of the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys Ed 15:641–656

    Article  CAS  Google Scholar 

  46. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford, p 285

    Google Scholar 

  47. Eder G, Janeschitz-Kriegl H (1984) Stefan problem and polymer processing. Polym Bull 11:93–98

    Article  CAS  Google Scholar 

  48. Janeschitz-Kriegl M, Janeschitz-Kriegl H, Eder G, Forstner R (2006) Heat transfer through metal walls of finite thiskness. Intern Polym Proc 21:41–48

    Article  CAS  Google Scholar 

  49. Bundrup J, Immergut H (1990) Polymer Handbook. Wiley

    Google Scholar 

  50. Ullmann F (1990) Enzyklopaedie der techn. Elsevier, Chemie

    Google Scholar 

  51. Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of tubular type. Publications on Engineering, Berkley

    Google Scholar 

  52. Eder G (1997) Fundamentals of structure formation in crystallizing polymers. In: Natada K, Kitayama T, Vogl O (eds) Macromolecular design of polymeric materials. Marcel Dekker Inc., pp 761–782

    Google Scholar 

  53. Daley DJ, Vere-Jones D (1988) An introduction to the theory of point processes. Springer, New York

    Google Scholar 

  54. Schulze GEW, Naujeck TR (1991) A growing 2D spherulite and calculus of variation. Colloid Polym Sci 269:689–695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Janeschitz-Kriegl .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janeschitz-Kriegl, H. (2018). Required Basic Achievements. In: Crystallization Modalities in Polymer Melt Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-77317-9_1

Download citation

Publish with us

Policies and ethics