Advertisement

Disturbance Decoupling in Finite Automata

  • Alexey Zhirabok
  • Alexey Shumsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)

Abstract

The paper addresses the disturbance decoupling problem by dynamic measurement feedback for finite automata. The mathematical technique called the pair algebra of partitions is used. The paper gives sufficient solvability conditions and a procedure to construct the required feedback.

Keywords

Finite automata Disturbance decoupling Measurement feedback Pair algebra of partitions 

Notes

Acknowledgments

This work was supported by the Russian Scientific Foundation (project 16-19-00046).

References

  1. 1.
    Lhommeau, M., Hardouin, L., Cottenceau, B.: Disturbance decoupling of timed event graphs by output feedback controller. In: Proceedings of the 6th Workshop on DES, Zaragoza, Spain, vol. 6, pp. 203–208 (2002)Google Scholar
  2. 2.
    Shumsky, A., Zhirabok, A.: Unified approach to the problem of full decoupling via output feedback. Eur. J. Control 16, 313–325 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kotta, U., Mullari, T.: Discussion on: unified approach to the problem of full decoupling via output feedback. Eur. J. Control 16, 326–328 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, D.: Disturbance decoupling of Boolean control networks. IEEE Trans. Autom. Control 56, 2–10 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yang, M., Li, R., Chu, T.: Controller design for disturbance decoupling of Boolean control networks. Automatica 49, 273–277 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Katz, R.: Max-plus (a,b)-invariant spaces and control of timed discrete-event systems. IEEE TAC 52(2), 229–241 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kaldmäe, A., Kotta, U., Shumsky, A., Zhirabok, A.: Measurement feedback disturbance decoupling in discrete-time nonlinear systems. Automatica 49, 2887–2891 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kaldmäe, A., Kotta, U., Shumsky, A., Zhirabok, A.: Measurement feedback disturbance decoupling in discrete-event systems. Int. J. Robust Nonlinear Control 25, 3330–3348 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hartmanis, J., Stearns, R.: The Algebraic Structure Theory of Sequential Machines. Prentice-Hall, Upper Saddle River (1966)zbMATHGoogle Scholar
  10. 10.
    Berdjag, D., Cocquempot, V., Christophe, C., Shumsky, A., Zhirabok, A.: Algebraic approach for model decomposition: application to fault detection and isolation in discrete-event systems. Int. J. Appl. Math. Comput. Sci. 21, 109–125 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Danilov, V., Kolesov, N., Podkopaev, B.: Algebraic model of hardware monitoring of automata. Autom. Remote Control 36, 118–125 (1975)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kaldmäe, A., Kotta, U., Shumsky, A., Zhirabok, A.: Faulty plant reconfiguration based on disturbance decoupling methods. Asian J. Control 8, 858–867 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhirabok, A., Shumsky, A.: Method of fault accommodation in finite automata. Autom. Remote Control 71, 122–132 (2010)MathSciNetGoogle Scholar
  14. 14.
    Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. Springer, Heidelberg (1990).  https://doi.org/10.1007/978-1-4757-2101-0 CrossRefzbMATHGoogle Scholar
  15. 15.
    Isidori, A.: Nonlinear Control Systems. Springer, Heidelberg (1995).  https://doi.org/10.1007/978-1-84628-615-5 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Far Easter Federal UniversityVladivostokRussia
  2. 2.Institute of Applied MathematicsFar Eastern Branch of Russian Academy of SciencesVladivostokRussia
  3. 3.Institute of Marine Technology ProblemFar Eastern Branch of Russian Academy of SciencesVladivostokRussia

Personalised recommendations