Advertisement

Efficient Translation with Linear Bimorphisms

  • Christoph Teichmann
  • Antoine Venant
  • Alexander Koller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)

Abstract

We show that the image of a regular tree language under a linear bimorphism over binary signatures can be computed in linear time in the size of the input automaton. We do this by transformation into a novel normal form. Our result applies to the translation and parsing complexity of a wide range of grammar formalisms used in computational linguistics, which can now be shown in a uniform way.

Keywords

Parsing Tree languages and tree automata Bimorphisms 

References

  1. 1.
    Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput. Sci. 20(1), 33–93 (1982).  https://doi.org/10.1016/0304-3975(82)90098-6 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Büchse, M., Koller, A., Vogler, H.: Generic binarization for parsing and translation. In: Proceedings of 51st ACL, pp. 145–154 (2013)Google Scholar
  3. 3.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M., Löding, C.: Tree automata techniques and applications (2007). http://tata.gforge.inria.fr/
  4. 4.
    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3. Springer, Berlin (1997).  https://doi.org/10.1007/978-3-642-59126-6_1 Google Scholar
  5. 5.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra semantics and continuous algebras. J. ACM 24(1), 68–95 (1977).  https://doi.org/10.1145/321992.321997 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Groschwitz, J., Koller, A., Johnson, M.: Efficient techniques for parsing with tree automata. In: Proceedings of 54th ACL, pp. 7–12 (2016).  https://doi.org/10.18653/v1/P16-1192
  7. 7.
    Groschwitz, J., Koller, A., Teichmann, C.: Graph parsing with S-graph grammars. In: Proceedings of 53rd ACL and 7th ICJNLP, pp. 1481–1490 (2015).  https://doi.org/10.3115/v1/P15-1143
  8. 8.
    Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3. Springer, Berlin (1997).  https://doi.org/10.1007/978-3-642-59126-6_2 Google Scholar
  9. 9.
    Koller, A., Kuhlmann, M.: A generalized view on parsing and translation. In: Proceedings of 12th IWPT, pp. 2–13 (2011)Google Scholar
  10. 10.
    Lautemann, C.: The complexity of graph languages generated by hyperedge replacement. Acta Informatica 27, 399–421 (1990).  https://doi.org/10.1007/BF00289017 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down tree transducers. SIAM J. Comput. 39, 410–430 (2009).  https://doi.org/10.1137/070699160 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Peng, X., Song, L., Gildea, D.: A synchronous hyperedge replacement grammar based approach for AMR parsing. In: Proceedings of 19th CONLL, pp. 32–41 (2015).  https://doi.org/10.18653/v1/K15-1004
  13. 13.
    Shieber, S.: Bimorphisms and synchronous grammars. J. Lang. Model. 2(1), 51–104 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Language Science and TechnologySaarland UniversitySaarbrückenGermany

Personalised recommendations