Pomsets and Unfolding of Reset Petri Nets

  • Thomas Chatain
  • Maurice Comlan
  • David Delfieu
  • Loïg Jezequel
  • Olivier H. Roux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)


Reset Petri nets are a particular class of Petri nets where transition firings can remove all tokens from a place without checking if this place actually holds tokens or not. In this paper we look at partial order semantics of such nets. In particular, we propose a pomset bisimulation for comparing their concurrent behaviours. Building on this pomset bisimulation we then propose a generalization of the standard finite complete prefixes of unfolding to the class of safe reset Petri nets.


  1. 1.
    Araki, T., Kasami, T.: Some decision problems related to the reachability problem for Petri nets. Theor. Comput. Sci. 3(1), 85–104 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures and processes. Inf. Comput. 171(1), 1–49 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benveniste, A., Fabre, E., Haar, S., Jard, C.: Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE TAC 48(5), 714–727 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent bisimulations in Petri nets. Acta Inf. 28(3), 231–264 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dufourd, C., Schnoebelen, P., Jančar, P.: Boundedness of reset P/T nets. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 301–310. Springer, Heidelberg (1999). CrossRefGoogle Scholar
  7. 7.
    Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Checking. Springer, Heidelberg (2008). zbMATHGoogle Scholar
  8. 8.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Form. Methods Syst. Des. 20(3), 285–310 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hickmott, S., Rintanen, J., Thiébaux, S., White, L.: Planning via Petri net unfolding. In: IJCAI, pp. 1904–1911 (2007)Google Scholar
  10. 10.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). CrossRefGoogle Scholar
  11. 11.
    Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refinement of actions. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989). CrossRefGoogle Scholar
  13. 13.
    van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987). CrossRefGoogle Scholar
  14. 14.
    Vogler, W.: Bisimulation and action refinement. Theor. Comput. Sci. 114(1), 173–200 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LSV – ENS CachanCachanFrance
  2. 2.LETIAUniversité d’Abomey-CalaviCotonouBénin
  3. 3.Université de Nantes and École Centrale de Nantes, LS2N UMR 6004NantesFrance

Personalised recommendations