Permutations Sorted by a Finite and an Infinite Stack in Series

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)


We prove that the set of permutations sorted by a stack of depth \(t \ge 3\) and an infinite stack in series has infinite basis, by constructing an infinite antichain. This answers an open question on identifying the point at which, in a sorting process with two stacks in series, the basis changes from finite to infinite.


Patterns String processing algorithms Pattern avoiding permutations Sorting with stacks 


  1. 1.
    Albert, M., Atkinson, M., Linton, S.: Permutations generated by stacks and deques. Ann. Comb. 14(1), 3–16 (2010). MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Albert, M., Bousquet-Mélou, M.: Permutations sortable by two stacks in parallel and quarter plane walks. Eur. J. Comb. 43, 131–164 (2015). MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Atkinson, M.D., Livesey, M.J., Tulley, D.: Permutations generated by token passing in graphs. Theor. Comput. Sci. 178(1–2), 103–118 (1997).–6 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Atkinson, M.D., Murphy, M.M., Ruškuc, N.: Sorting with two ordered stacks in series. Theor. Comput. Sci. 289(1), 205–223 (2002).–5 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bóna, M.: A survey of stack-sorting disciplines. Electron. J. Comb. 9(2), A1 (2003)MathSciNetMATHGoogle Scholar
  6. 6.
    Claesson, A., Dukes, M., Steingrímsson, E.: Permutations sortable by \(n-4\) passes through a stack. Ann. Comb. 14(1), 45–51 (2010). MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Elder, M.: Permutations generated by a stack of depth 2 and an infinite stack in series. Electron. J. Comb. 13(1), Research Paper #68 (2006).
  8. 8.
    Elder, M., Lee, G., Rechnitzer, A.: Permutations generated by a depth 2 stack and an infinite stack in series are algebraic. Electron. J. Comb. 22(2), Paper 2.16, 23 (2015)Google Scholar
  9. 9.
    Elvey-Price, A., Guttmann, A.J.: Permutations sortable by two stacks in series. Adv. Appl. Math. 83, 81–96 (2017). MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goh, Y.K.: Ph.D. thesis, University of Technology Sydney (2019, in preparation)Google Scholar
  11. 11.
    Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Co., Reading (1973)Google Scholar
  12. 12.
    Murphy, M.M.: Restricted permutations, antichains, atomic classes, stack sorting. Ph.D. thesis, University of St Andrews (2002)Google Scholar
  13. 13.
    Pierrot, A., Rossin, D.: 2-stack pushall sortable permutations. CoRR abs/1303.4376 (2013).
  14. 14.
    Pierrot, A., Rossin, D.: 2-stack sorting is polynomial. Theory Comput. Syst. 60(3), 552–579 (2017). MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Smith, R.: Two stacks in series: a decreasing stack followed by an increasing stack. Ann. Comb. 18(2), 359–363 (2014). MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Smith, R., Vatter, V.: The enumeration of permutations sortable by pop stacks in parallel. Inf. Process. Lett. 109(12), 626–629 (2009). MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Tarjan, R.: Sorting using networks of queues and stacks. J. Assoc. Comput. Mach. 19, 341–346 (1972). MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    West, J.: Sorting twice through a stack. Theor. Comput. Sci. 117(1), 303–313 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Technology SydneyUltimoAustralia

Personalised recommendations